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Introduction

@ https://www.youtube.com/watch?v=cQ54GDmleL0
w an example of deepfake (enabled by GANSs)
@ FaceApp

@ « [GANs are] the coolest idea in deep learning in the last 20 years
» —Yann LECUN, Facebook’s chief Al scientist

@ « [GANs represent] a significant and fundamental advance » —
Andrew NG, former chief scientist of China’s Baidu
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Introduction

@ goal of Al: simulate human intelligence — creativity

@ generative models — generative adversarial networks (GANs) by
lan GOODFELLOW (« the GANfather ») in 2014

@ mainly for computer vision — what about patient data?

@ Example: portrait constructed from 15,000 examples in 2018 with GANs
sold with an auction price of 432 000$
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General presentation on GANs Some preliminary notions
How do GANs work?

| — General presentation on GANs
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l.1 Some preliminary notions

o General presentation on GANs

@ Some preliminary notions
@ Supervised vs. unsupervised learning
@ What is a generative model?
@ Why are generative models interesting?
@ A few important concepts of machine learning
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General presentation on GANs Some preliminary notions
How do GANs work?

Supervised vs. unsupervised learning

Supervised learning Unsupervised learning
@ Data x, labels y @ Data x, no labels y
@ Goal: learn a function @ Goal: learn some underlying
Xy hidden structure of the data x
@ Example: linear regression @ Example: clustering

Advantages of unsupervised learning
@ training is cheaper
@ learns some hidden structure
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General presentation on GANs Some preliminary notions
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What is a generative model? (1/2)

@ Given training data, generate new samples from same distribution.
Learn a model pmogel(X) Which is similar to pgata(X)-

Explicit density estimation Implicit density estimation
@ explicitly define and solve for @ learn a model that can
pmodeI(X) sample from pmodel(x)
e Example: without explicitly defining
Pmodel (X)
I @ Example:
ey =
training data generated
from Peeta(X) samples from
Pmodel(X)
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What is a generative model? (2/2)

Taxonomy of Generative Models

GAN
‘ Generative models ‘
/\
‘ Explicit density ‘ ‘ Implicit density ‘
/\ [ —
‘ Tractable density ’ ‘ Approximate density ‘ ’ Markov Chain ‘
Fully Visible Belief Nets / \ GSN
- NADE
MADE ’ Variational ‘ ‘ Markov Chain ‘

PlerRNN/CNN Variational Autoencoder Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tuterial on Generative Adversarial Networks, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 19 May 18,2017
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General presentation on GANs Some preliminary notions
How do GANs work?

Why are generative models interesting? (1/4)

Excerpt of GOODFELLOW’s NIPS 2016 tutorial:

https://youtu.be/HGYYEUSM-0Q?2t=600
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General presentation on GANs Some preliminary notions
How do GANs work?

Why are generative models interesting? (2/4)

Realistic fictional portraits of celebrities generated from a high-quality version
of the CELEBA dataset consisting of 30 000 images using GANs:
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General presentation on GANs

Some preliminary notions

How do GANs work?

Why are generative models interesting? (3/4)

Real images transposed into realistic fictional images using GANs

( image-to-image translation ):

Monet = Photos Zebras = Horses . Summer = Winter

2 s
2zebra —) horse

horse — zebra

Photograph

Sylvain COMBETTES
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General presentation on GANs Some preliminary notions
How do GANs work?

Why are generative models interesting? (4/4)

Several types of image transformations using GANs:

Labels to Street Scene Labels to Facade BW to Color

input . output
P Aerial to Map P
A o

A

Edges to Photo

b

7l {
Input output output input

output
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General presentation on GANs Some preliminary notions
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A few important concepts of machine learning (1/3)

Training dataset

@ Al is not creative: it can only learn from the
training database. —~

@ small training dataset — problems (overfitting...)

D)
@ a supervised deep learning algorithm will ? ;1'

generally:

e achieve acceptable performance with around
5,000 labeled examples per category

e match or exceed human performance when
trained with a dataset containing at least 10
million labeled examples

@ choose good features

@ performance on new unseen data (and not
training data)

Sylvain COMBETTES Generative Adversarial Networks (GANs)



General presentation on GANs Some preliminary notions
How do GANs work?

A few important concepts of machine learning (2/3)

Deep learning

@ complicated distribution — estimate it with a

neural network m
@ neuroscience: important source of inspiration

but no longer the predominant guide ai_;;_bﬁ
@ deep learning is the most used technique in

machine learning for computer vision
@ deep learning dates back to the 1940s and

became popular only recently:
e amount of available training data
e computer infrastructure (both hardware and
software)
@ dominant training algorithm: stochastic gradient
descent and softmax loss function
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A few important concepts of machine learning (3/3)
Maximum Likelihood Estimation (MLE)

o X = {x(M ... x(M} drawn from pyata(x) (unknown)

@ Pmodel(X; @): parametric family of probability distributions over the
same space indexed by 6

@ MLE for 6:

m
O = arggnax Prmodel (X; 8) = arg?ax Hpmodel(x(l); 6)
i=1
@ We prefer a sum:
m
O = arg;nax Z log pmodel(x(l); 6)
i=1

@ We divide by m:

O = arg max EgByua 108 Pmodel (X 0)
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How do GANs work?

[.2 How do GANs work?

o General presentation on GANs

@ How do GANs work?

@ The principle: generator vs discriminator
@ The minimax game

@ Gradient descent
@ Application: TensorFlow and GAN Lab
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General presentation on GANs Some preliminary notions
How do GANs work?

Introduction

GANSs:
@ unsupervised learning

@ generative model with implicit density
estimation Output: Sample from
P using 2 neural networks training distribution
@ problem: sample from a complex and
high-dimensional training distribution
— generate from a simple distribution:
random noise z

— the generated data is not all
identical

Input: Random noise

@ mainly for vision
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General presentation on GANs

Some preliminary notions
How do GANs work?

The principle: generator vs discriminator

@ generator network: try to
fool the discriminator by
generating real-looking
images

@ discriminator network: try
to distinguish between real
images and fake images

“The Artist”

A neural network trying to

create pictures of cats that
Took real.

Thousands of real-world
images labeled "CAT"

DISCRIMINATOR
“The Art Critic"
A neural network examining  —3>
cat pictures to determine if
they're real or fake.

DISCRIMINATOR <« @‘
e

Sylvain COMBETTES

Real or Fake

Discriminator Network

Fake Images
(from generator)

Generator Network

Random noise

Real Images
(from training set)

o

First
attempt

S

Even more

Many attempts
later attempts later

4

DISCRIMINATOR
9 9
»N »N N
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General presentation on GANs Some preliminary notions
How do GANs work?

The minimax game (1/2)

@ train jointly G and D in minimax game
@ minimax objective function:

min max [Exp, 108 Do, (X) + Ezvpz) log (1 — Do, (Goy(2)))]
g9

@ D outputs the likelihood of real image in [0, 1]:
e D(x) equals 1 if D considers that x is a real data

e D(x) equals 0 if D considers that x is a fake data (for example a
generated data).

@ equilibrium when the discriminator can no longer distinguish real
images from fakes — D outputs 1/2 everywhere

@ D(x) is the output of the discriminator for a real input x

@ D(G(2)) is the output of the discriminator for a fake generated
data G(z2)
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How do GANs work?

The minimax game (2/2)

@ (recall) minimax objective function:

min max [Expg, 108 Do, (X) + E,p(z) log (1 — Dy, (Gs,(2)))]

eg Gd

@ Discriminator (64) wants to maximize objective such that D(x) is
close to 1 (real) and D(G(z)) is close to O (fake)

@ Generator (65) wants to minimize objective such that D(G(z)) is
close to 1 (discriminator is fooled into thinking generated G(z) is
real)

@ unsupervised learning but:

e the data generated by G has a 0 label for false
o the real learning data has a 1 label for true
— define a loss function
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How do GANs work?

Gradient descent (1/3)

(recall) minimax objective function:

min meix [Ex~paa 08 Doy (X) + Ezvp(z) log (1 - De, (Geg(z)))]

bg

for training, we will alternate between:
@ gradient ascent on discriminator :

meax [EXdiata |Og ng(X) + IEZNP(Z) |Og (1 B ng (GQQ(Z)))]
d
@ gradient descent on generator :

min [E;p(z) log (1~ Do (Gu,(2)))]

g
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How do GANs work?

Gradient descent (2/3)

(recall) minimax objective function:

min max [Ex-pqa 10g Do, (X) + Ezvp(z) log (1 = Do, (Gay(2)))]

Gradient signal

dominated by region s

where sample is ,

already good /

\ 1

When sample is likely: ( ]
fake, want to learn High gradient signal
from it to improve N
generator. But -
gradient in this reglon “oo 02

Cow gradient signal
maximize likelihood of discrimina-
tor being wrong

is relatively flat!

minimizing likelihood of discrimi-
nator being correct
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Gradient descent (3/3)

(recall) minimax objective function:

min meix [Ex~paa 08 Doy (X) + Ezvp(z) log (1 - De, (Geg(z)))]

bg

for training, we will alternate between:
@ gradient ascent on discriminator:

meax [EXdiata |Og ng(X) + IEZNP(Z) |Og (1 B ng (GQQ(Z)))]
d
@ gradient ascent on generator:

meax [EZNp(z) |Og (ng (Geg(z)))]

g
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General presentation on GANs Some preliminary notions

How do GANs work?

Algorithm 1 GAN training

1: for number of training iterations do
2 for k steps do
3: Sample minibatch of m noise samples {z(), ..., z(™} from noize prior pg(z). ® for
the fake data
4 Sample minibatch of m noise samples {x(V), ..., x(™M1 from data generating distribu-
tion pyata (X)- > for the real
data
5: Update the discriminator by ascending its stochastic gradient:
17 . .
oo 3 e, () +108 (1 -0, (@, ()]
i=1
6: end for
7:  Sample minibatch of m noise samples {z("), ..., z(™} from noize prior pg(2).
8: Update the generator by ascending its stochastic gradient (improved objective):

Vo, -3 tog 0y, (G, (20))

i=1
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Application: TensorFlow and GAN Lab

@ TensorFlow’s tutorials with Google Colab

e Generating Handwritten Digits with DCGAN on TensorFlow 1.13:
https:
//github.com/tensorflow/tensorflow/blob/rl.13/tensorflow/
contrib/eager/python/examples/generative_examples/dcgan.ipynb

e Deep Convolutional Generative Adversarial Network on
TensorFlow 2.0:
https://www.tensorflow.org/beta/tutorials/generative/dcgan

@ CycleGAN on TensorFlow 2.0:

https://www.tensorflow.org/beta/tutorials/generative/cyclegan
@ GAN Lab: Understanding Complex Deep Generative Models
using Interactive Visual Experimentation

@ https://poloclub.github.io/ganlab/
@ https://youtu.be/eTg9T_sPTYQ?t=37
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Application of GANs to patient data

xperimental results

Il - Application of GANs to patient data
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lI.1 Theoretical approach: medGAN

9 Application of GANSs to patient data

@ Theoretical approach: medGAN

@ How can Servier benefit from GANs?
@ What are autoencoders?

@ How does medGAN work?

Sylvain COMBETTES
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Theoretical approach: medGAN
Algorithmic implementation
Experimental results

How can Servier benefit from GANs?

Application of GANs to patient data

@ privacy of patients’ personal data
e EHR data is composed of personal
identifiers (dates of birth...)
o de-identification does not work
(re-identification)
o for researchers: better access to EHR data
through fake realistic generated data

@ data augmentation in order to make better
predictions

e enrich the original training (small) dataset in _3

order to make better predictions m

e very experimental
e generating fictitious realistic patients with
)

medGAN from a dataset of 500 samples with
250 variables — suboptimal
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Theoretical approach: medGAN
Algorithmic implementation

Application of GANs to patient data S il

What are autoencoders? (1/3)

@ Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Features YA

A
Encoder

Input data | T |

@ encoder : function mapping from x to z — neural network

@ z usually smaller than x (dimensionality reduction) — want
features z to capture meaningful factors of variation in data x
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What are autoencoders? (2/3)

How to learn this feature representation?

@ train such that features can be used to reconstruct original data
@ “autoencoding” «» encoding itself
@ role of the decoder :

Reconstructed

input data T |
Decoder
Features z:
Encoder
Input data | T |

@ [? loss function: ||x — X||? (no labels!)
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Application of GANs to patient data S il

What are autoencoders? (3/3)

@ after training: no need for the decoder

@ encoder — when we do not have enough input data x, we can use
the encoder to initialize a supervised learning problem with better
features z

Loss function
(Softmax, etc)

Predicted Label \

Classifier Fine-tune
encoder
jointly with

e Z:I Jclass)i/fier

Encoder

Input data | T ‘
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How does medGAN work? (1/2)

medGAN: combination of GANs and autoencoders

medGAN: neural network model that generates
@ highdimensional
@ multi-label
@ discrete

variables that represent the events in EHRs
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How does medGAN work? (2/2)

medGAN: combination of GANs and autoencoders

continuous

— Dec(G(z)) is the
synthetic discrete
\___2 7 output

é._

\ | ReLUGBN, (W;2))

Real or Fake? Why autoencoders?
/g @ the training data x is
_____ P discrete (binary or
"P_"C_(F(i")i', A ! count variables)
______ // 1 *2 1
OO o I 1o
I I \\ 1ReLU(BN,(Wyx,)) : r nd m r. rZ) IS
Enc(x) z \ : x : andom prio
: :
I 1
I
I
1
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Il.2 Algorithmic implementation

9 Application of GANSs to patient data

@ Algorithmic implementation
@ The medGAN program from CHoI's GitHub
@ Explanation of the code’s steps
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Application of GANs to patient data Syt il

The medGAN program from CHOI's GitHub (1/2)
CHol’s GitHub

e 0 https://github.com/mp2893/medgan
@ TensorFlow 1.2, Python 3

@ 2 programs:
@ process_mimic.py (124 lines)
@ medgan.py (410 lines)

@ values for medgan.py:

e binary
@ or count
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Theoretical approach: medGAN
Algorithmic implementation

Application of GANs to patient data Syt il

The medGAN program from CHOI's GitHub (2/2)
The free and public MIMIC-III dataset

@ MICMIC-IIl dataset: free publicly available hospital database
containing de-identified data from approximately 40,000 patients
— access to it helps to understand how medGAN works

o features: specific medical code (ICD-9)

@ a few important rules:
e granted to someone as an individual (not for colleagues)
e must share the code used to produce my results
e no attempt to identify any individual
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Explanation of the code’s steps

() https://github.com/sylvaincom/medgan-tips
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II.3 Experimental results

e Application of GANs to patient data

@ Experimental results

@ For the MIMIC-IIl dataset of shape (46 520, 1 071) with binary values
@ For the MIMIC-III of shape (1 000, 100) with binary values

@ For the MIMIC-IIl dataset of shape (46 520, 1 071) with count values
@ For the MIMIC-IIl dataset of shape (1 000, 100) with count values

Sylvain COMBETTES
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For MIMIC-III (46 520, 1 071) with binary values (1/4)

Accuracy of the (fictitious) generated data (1/2)

w |s our (fictitious) generated dataset realistic?

dataset | number of samples | number of features
real 46 520 1 071
fict 10 000 1071

n_epoch ‘ n_pretrain_epoch ‘ batch_size ‘ nSamples

1000 | 100 1000 | 10000
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Algorithmic implementation
Experimental results

For MIMIC-III (46 520, 1 071) with binary values (2/4)

Accuracy of the (fictitious) generated data (2/2)

Application of GANs to patient data

Dimension-wise probability performance of medGAN

0.40 A
® Bernoulli success probability

0.35 { = ideal Bernoulli success probability
0.30
0.25 A
0.20
0.15 A

0.10 -

For the (fake) generated dataset

0.05 4

0.00 4

T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
For the real dataset

v The synthesis of binary values using medGAN works.
# We could quantify the accuracy of £ict with MSE.
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Application of GANs to patient data Bl resulis

For MIMIC-III (46 520, 1 071) with binary values (3/4)

Boosting the prediction score with data augmentation (1/2)

| real dataset | fict dataset | aug dataset
46 520 10 000 56 520

number of samples

number of features 1071 1071 1071

How do we compute the prediction score of a dataset?
@ we select one feature called target
@ try to predict target using the remaining 1 070 features
@ hyper-parameters — randomized search (sklearn)
@ score — cross-validation (sklearn)
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Application of GANs to patient data Bl resulis

For MIMIC-III (46 520, 1 071) with binary values (4/4)

Boosting the prediction score with data augmentation (2/2)

How do we choose target?
@ feature with the highest variance
@ a feature with a low variance (ex. with only 1s) is very easy to
predict for new unseen samples (because we put 1s)
@ we want target to have a proportion of 1s that is the closest to
50%

X We should not perform data augmentation on a real dataset that
already has a lot of samples.
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For MIMIC-III (1 000, 100) with binary values (1/8)

Accuracy of the (fictitious) generated data (1/2)

Out of the (46 520, 1 071) shaped MIMIC-I1II dataset, we randomly
select 1 000 samples and 100 features.

X Do not forget to select the samples and the features of our real
dataset randomly.

# We should work on more than one real dataset.

dataset | number of samples | number of features

real 1 000 100
fict 1 000 100
n_epoch ‘ n_pretrain_epoch ‘ batch_size ‘ nSamples
1 000 ‘ 100 ‘ 100 ‘ 1 000
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For MIMIC-III (1 000, 100) with binary values (2/8)

Accuracy of the (fictitious) generated data (2/2)

Application of GANs to patient data

Dimension-wise probability performance of medGAN

® Bernoulli success probability

w 0.25 1 . .
@ —— ideal Bernoulli success probability
8 .
-}
T 0.20 4
T
g
©
2 0.15
Q
o
n
=1
© 0.10
=
s
=]
£ 0.05
=
.
S
[

0.00 -

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

For the real dataset

# How to choose the parameters of medGAN to make our generated
dataset £ict more realistic?
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Application of GANs to patient data Experimental results

For MIMIC-III (1 000, 100) with binary values (3/8)

Boosting the prediction score (5-fold cross-validation) with data augmentation (1/3)

target: feature of index 5, proportion of 1s equal to 0.264

b ]

Proporticn of 1s

L]
010 e
-
005 *
. .
:."o % apea oo
0.00 L A T LT ——
0 200 400 600 a00 1000

Index of feature

Method:
@ Benchmark of ML models on real of shape (1 000, 100)
© Benchmark of ML models on aug of shape (2 000, 100)
© Benchmark of scores’ increase from real to aug on ML models
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Theoretical approach: medGAN
Algorithmic implementation
Experimental results

For MIMIC-III (1 000, 100) with binary values (4/8)

Boosting the prediction score (5-fold cross-validation) with data augmentation (2/3)

ML model

Prediction score increase (%)

Logistic Regression
Nearest Neighbors
Naive Bayes
Perceptron

SVM

Random Forest
Multi-Layer Perceptron

7.32
5.74
-3.69
7.59
12.16
5.31
6.2

Table: Benchmark of scores’ increase from real to aug on ML models
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For MIMIC-III (1 000, 100) with binary values (5/8)

Boosting the prediction score (5-fold cross-validation) with data augmentation (3/3)

Application of GANs to patient data

Boosting the prediction score with data augmentation

0.80 1 ® Approx. mean of scores ® o
0754 — Equal approx. mean of scores L]

0.70
0.65 -
0.60 4
0.55 4

0.50

For the augmented dataset

0.45

0.40 4

T T T
0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
For the real dataset

X We should not try to measure the score increase of data augmentation with
a cross-validation because target would contain fictitious generated values.
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For MIMIC-III (1 000, 100) with binary values (6/8)

Boosting the prediction score (on a proper test set) with data augmentation (1/3)

Method:

@ Split real (1 000, 100) into Xx_train and y_train (thatis
actually target).
@ Use X_trainand y_train to build a model that can predict y
for an unseen X.
@ For test, we randomly select 250 samples from MIMIC-III
(46 520, 1071) that are not already samples in real. We split
test (250, 100) into Xx_test and y_test (that is actually
target).
@ We fit the model with model.fit (X_train, y_train) then
compute the score with model.score (X_test, y_test).
# For a given real, we should take the mean of scores on several
randomly chosen test.
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For MIMIC-III (1 000, 100) with binary values (7/8)

Boosting the prediction score (on a proper test set) with data augmentation (2/3)

ML model

Prediction score increase (%)

Logistic Regression
Nearest Neighbors
Naive Bayes
Perceptron

SVM

Random Forest
Multi-Layer Perceptron

1.13
2.92
2.78
5.23
1.70
2.41
4.09

Table: Benchmark of scores’ increase from real to aug on ML models

Perceptron: 0.688 — 0.724

# We should run several simulations (because of the randomized
search) and take the mean of scores.
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For MIMIC-III (1 000, 100) with binary values (8/8)

Boosting the prediction score (on a proper test set) with data augmentation (3/3)

Application of GANs to patient data

Boosting the prediction score with data augmentation

® Approx. mean of scores g
0.70 { =—— Equal approx. mean of scores '

0.65
0.60 -

0.55 4

For the augmented dataset

T T T T T T
0.45 0.50 0.55 0.60 0.65 0.70
For the real dataset

v’ Using medGAN to boost the prediction score works on binary values.

# How to choose the parameters of medGAN to increase the prediction
score?
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For MIMIC-III (46 520, 1 071) with count values (1/2)

Accuracy of the (fictitious) generated data (1/2)

w |s our (fictitious) generated dataset realistic?

dataset | number of samples | number of features
real 46 520 1 071
fict 10 000 1071

n_epoch ‘ n_pretrain_epoch ‘ batch_size ‘ nSamples

1000 | 100 1000 | 10000
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For MIMIC-III (46 520, 1 071) with count values (2/2)

Accuracy of the (fictitious) generated data (2/2)

Application of GANs to patient data

Performance of medGAN on count features Performance of medGAN on count features
05| ® meanforeach feature L4 1.6 1 L
‘@ 7 | — ideal mean for each feature K
o 2 1.4+
£ £
S 04 S
T 044 T 124
L L
° S 104
% 03 %
S 508
9 9
] ]
202 2 06
g g
& © 0.4 4
£o1 2
T L 0.2
K K . ® variance for each feature
00 00 1 —— ideal variance for each feature
0.0 0.1 0.2 0.3 0.4 0.5 00 02 04 06 08 10 12 14 16
For the real-life dataset For the real-life dataset

v The synthesis of count values using medGAN works.
# Find a better measure of accuracy.
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For MIMIC-III (1 000, 100) with count values

Boosting the prediction score (on a proper test set) with data augmentation

Prediction score increase (%)
Logistic Regression 0.00
Nearest Neighbors 0.00
Naive Bayes 0.00
Perceptron -9.09
SVM -9.33
Random Forest 1.28
Multi-Layer Perceptron 5.56

Table: Benchmark of scores’ increase from real to aug on ML models

# fict is realistic /* =— score *

# |t is harder to synthesize count values than binary ones.
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Conclusion
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Conclusion

@ using medGAN to synthesize:

v binary values
v/ count values

@ using medGAN to boost the prediction score with data
augmentation:
v binary values
X count values
@ some important results:
e fict isrealistic /' — score *
e itis harder to synthesize count values than binary ones
e medGAN does not work on continuous values
@ medGAN works badly when mixing count values with binary ones
e binary values are actually very useful (categorical with one-hot
encoding, intervals for continuous values...)
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