
Sylvain Combettes

Master of Science candidate
Ecole des Mines de Nancy
Department of Applied Mathematics

Q sylvain.combettes [a t] mines-nancy.org
¯ https://www.linkedin.com/in/sylvain-combettes
� https://github.com/sylvaincom

Internship report | Generative Adversarial Networks
(GANs)

June 24th – September 13th, 2019

Topic:
Generating fictitious realistic patient data using GANs (generative
adversarial networks)

Internship supervisors:
Fabrice COUVELARD

Romain GUILLIER

Company:
Servier
50 Rue Carnot, 92284 Suresnes

Department:
Pôle d’Expertise Méthodologie et Valorisation des Données (PEX
MVD)

Abstract

In the first chapter, we do a general presentation on GANs, in particular how they work.
GANs are a revolutionary generative model invented by Ian GOODFELLOW in 2014. The
key idea behind GANs is to have two neural networks competing against each other: the
generator and the discriminator. GANs can synthesize samples that are impressively
realistic.

In the second chapter, we apply GANs to patient data. The method is called medGAN (for
medical GAN) and was developed by Edward CHOI in 2018. medGAN can only synthesize
binary or count values. There are two main applications of medGAN: privacy and dataset
augmentation. We only focus on dataset augmentation from a real-life dataset: we
generate fictitious yet realistic samples that can then be concatenated with the real-life
dataset into an augmented dataset (that has more samples). Training a predictive model
on the augmented dataset rather than the real-life dataset can boost the prediction
score (if the generated data is realistic enough). All the programs can be found on my
GitHub.

https://www.linkedin.com/in/sylvain-combettes
https://github.com/sylvaincom

2

Contents

Acknowledgments 5

Introduction 7

I General presentation on generative adversarial networks (GANs) 11

I.1 Some preliminary notions . 13

I.1.1 Supervised vs. unsupervised learning . 13

I.1.2 What is a generative model? . 13

I.1.3 Why are generative models interesting? . 15

I.1.4 A few important concepts and facts of machine learning 16

I.2 How do GANs work? . 21

I.2.1 The principle: generator vs discriminator . 21

I.2.2 The two-player minimax game . 23

I.2.3 Gradient descent . 23

I.2.4 Application: some simulations with TensorFlow and GAN Lab 26

I.3 Comparison of GANs with other generative models . 26

II Application of GANs to electronic health records (EHR) 27

II.1 Theoretical approach: medGAN . 29

II.1.1 How can Servier benefit from GANs? . 29

II.1.2 What are autoencoders? . 30

II.1.3 How does medGAN work? . 33

II.2 Algorithmic implementation . 36

II.2.1 The medGAN program from Edward CHOI’s GitHub 36

II.2.2 Explanation of the code’s steps . 37

II.3 Experimental results . 39

II.3.1 For the MIMIC-III dataset of shape (46 520, 1 071) with binary values 39

3

II.3.2 For the MIMIC-III dataset of shape (1 000, 100) with binary values 41

II.3.3 For the MIMIC-III dataset of shape (46 520, 1 071) with count values 47

II.3.4 For the MIMIC-III dataset of shape (1 000, 100) with count values 49

Conclusion 53

Bibliography 54

Notation 57

List of Figures 58

List of Tables 60

4

Acknowledgments

I would like to thank Fabrice COUVELARD and Romain GUILLIER, my internship supervisors, for this
great experience. I was able to learn a lot from them. I thank them for letting me conduct research
in a autonomous way, for their advice and for creating a pleasant work atmosphere.

I would also like to thank the rest of the data science team: Antoine HAMON, Florent LEFORT, Sylvain
PUYRAVAUD, Freddy LORIEAU and Cheima BOUDJENIBA. I was able to ask them questions about
programming or data science and they have been very helpful.

Finally, I thank everybody at Servier for their professionalism and sympathy.

5

6

Introduction

Over the past decade, the explosion of the amount of data available – Big Data – the optimization of
algorithms and the constant evolution of computing power have enabled artificial intelligence (AI)
to perform more and more human tasks. In 2018, Google’s CEO Sundar PICHAI predicted that AI
will have a deeper impact than electricity or fire. In 2018, the McKinsey Global Institute predicted
that AI will create an economic value of $2.7 trillion over the next 20 years.

AI aims at simulating human intelligence. Nowadays, AI is able to compute faster than humans and
beat them at the game of Go. In his TED Talk [22], Martin FORD explains that the fact that Google
DeepMind’s artificial intelligence program AlphaGo was able to beat the best player at the game of
Go in May 2017 is a breakthrough. Indeed, the game of Go has an infinite number of possibilities so
no computer can analyze each possibility, but also because even the best players say that the game
of Go is very intuitive.

How can we define artificial intelligence? In 1950, Alan TURING proposed an intelligence test
for machines. According to [13], the game of imitation consists in developing a machine that is
indistinguishable from a human being. Specifically, TURING suggested that a judge J exchange
typed messages with a human being H on the one hand and a machine M on the other hand. These
messages could cover all kinds of topics. The judge J does not know which of his two interlocutors
(whom he knows as A and B) is the machine M and which is the human H . After a series of
exchanges, the judge J must guess who is the machine and who is the human being. TURING

thought that if one day we succeed in developing machines that make it impossible to identify
correctly (i.e. lead the judge J to a 50% misidentification rate identical to what a random answer
would give), then we can claim to have designed an intelligent machine or – what we will consider
equivalent – a machine that thinks.

The introduction of the Deep Learning book [3] states the following:

« In the early days of artificial intelligence, the field rapidly tackled and solved problems
that are intellectually difficult for human beings but relatively straightforward for com-
puters – problems that can be described by a list of formal, mathematical rules. The true
challenge to artificial intelligence proved to be solving the tasks that are easy for people
to perform but hard for people to describe formally – problems that we solve intuitively,
that feel automatic, like recognizing spoken words or faces in images. »

If we claim that the purpose of AI is to simulate human intelligence, the main difficulty is creativity.
In the field of AI, we talk about generative models and one of the most popular model nowadays is
GANs (for "generative adversarial networks").

Before discussing the technical part of the topic (i.e. scientific papers), it is very informative to
read popular science articles, for example from Sciences and Future [17], Les Echos [18] [19] [20]
or MIT Technology Review [14] [15]. They allow us to have a global and synthetic vision of GANs

7

in order to better understand the technical details. According to [14], « Yann LeCun, Facebook’s
chief AI scientist, has called GANs “the coolest idea in deep learning in the last 20 years.” Another AI
luminary, Andrew Ng, the former chief scientist of China’s Baidu, says GANs represent “a significant
and fundamental advance” that’s inspired a growing global community of researchers. »

In 2014, Ian GOODFELLOW invented GANs [1] and was then nicknamed "the GANfather". In his first
paper that introduced GANs [1], GOODFELLOW included the bar where he first got the idea of GANs
in the acknowledgments part: « Finally, we would like to thank Les Trois Brasseurs for stimulating
our creativity. ». In 2019, aged 34, he was nominated in Fortune’s 40 under 40 – an annual selection
of the most influential young people – with the following description:

« As one of the youngest and most respected A.I. researchers in the world, Ian Goodfellow
has kept busy pushing the frontiers of deep learning. Having studied under some of the
leading deep-learning practitioners like Yoshua Bengio and Andrew Ng, Goodfellow’s
expertise involves neural networks, the A.I. software responsible for breakthroughs in
computers learning how to recognize objects in photos and understanding language.
Goodfellow’s creation of so-called generative adversarial networks (GANs) has enabled
researchers to create realistic-looking but entirely computer-generated photos of people’s
faces. Although his techniques have allowed the creation of controversial “deepfake”
videos a, they’ve also paved the way for advanced A.I. that can create more realistic sound-
ing audio voices, among other tasks. Apple recently took notice of Goodfellow’s work
and hired him to be the iPhone maker’s director of machine learning in the company’s
special projects group. He was previously a star senior staff research scientist at Google
and researcher at the high-profile nonprofit OpenAI. »

Source: https://fortune.com/40-under-40/2019/ian-goodfellow

aAccording to Wikipedia, « Deepfake (a portmanteau of "deep learning" and "fake") is a technique for
human image synthesis based on artificial intelligence. It is used to combine and superimpose existing
images and videos onto source images or videos using a machine learning technique known as generative
adversarial network. The phrase "deepfake" was coined in 2017. Because of these capabilities, deepfakes
have been used to create fake celebrity pornographic videos or revenge porn. Deepfakes can also be used
to create fake news and malicious hoaxes. » One main example of deepfake is https://www.youtube.
com/watch?v=cQ54GDm1eL0: a fake video of Obama warns us against fake news [21].

According to [14], « The magic of GANs lies in the rivalry between the two neural nets. It mimics
the back-and-forth between a picture forger and an art detective who repeatedly try to outwit one
another. Both networks are trained on the same data set. The first one, known as the generator,
is charged with producing artificial outputs, such as photos or handwriting, that are as realistic
as possible. The second, known as the discriminator, compares these with genuine images from
the original data set and tries to determine which are real and which are fake. On the basis of
those results, the generator adjusts its parameters for creating new images. And so it goes, until the
discriminator can no longer tell what’s genuine and what’s bogus. » GANs can be used to imitate
any data distribution (image, text, sound, etc.).

An artwork created thanks to them, based on the analysis of 15,000 examples, was recently put
up for auction for a total amount of $432,500. This artwork is displayed on figure 1. It is signed
at the bottom right with minθg maxθd Ex∼pdata logDθd (x)+Ez∼p(z) log(1−Dθd (Gθg (z))), which is the
fundamental equation I.3 of subsection I.2.2 on which the GAN algorithm 1 is based. Printed on
canvas, the work belongs to a series of generative images called « La Famille de Belamy », where the
name « Belamy » is the French translation of « Goodfellow ».

The main application of GANs (and deep learning in general) concerns computer vision as well as

8

https://fortune.com/40-under-40/2019/ian-goodfellow
https://www.youtube.com/watch?v=cQ54GDm1eL0
https://www.youtube.com/watch?v=cQ54GDm1eL0

Figure 1: Portrait generated in 2018 by Paris-based arts-collective Obvious with GANs sold with an
auction price of 432 000$

Source: http://obvious-art.com/edmond-de-belamy.html

natural language processing (NLP). Note that in computer vision, images are represented as a 2-D
grid of pixels, as shown in figure 2. When a computer looks at this image, it does not get the concept
of cat as a human would. Instead, the computer is representing the image as a (gigantic) grid of
numbers. If the size of the image is 800×600 and each pixel is represented by 3 numbers between
[0,255] (giving the red, green, and blue value for that pixel), then we have an array of 800×600×3
numbers. This array of 800×600×3 numbers can be stretched out into a vector of dimension
1 440 000 = 800×600×3. In short, an image is seen as a high-dimensional vector through its pixels.

Figure 2: The semantic gap between the concept of cat (that a human sees) and the pixel values
(that the computer sees)

Source: Standord CS231n [2] lecture 2

In this report, we try to extend the range of GANs to electronic health records (EHR), more precisely
to patient data.

9

http://obvious-art.com/edmond-de-belamy.html

10

Chapter I

General presentation on generative
adversarial networks (GANs)

In AI, generative adversarial networks (GANs) are a generative model. GANs are an unsupervised
learning method using two neural networks.

Just for information, here are some interesting websites that include references in order to under-
stand GANs from A to Z:

• Jason BROWNLEE. Best Resources for Getting Started With Generative Adversarial Networks
(GANs). 2019. https://machinelearningmastery.com/resources-for-getting-started-
with-generative-adversarial-networks/

• Ajay Uppili ARASANIPALAI. Generative Adversarial Networks - The Story So Far. 2019.
https://blog.floydhub.com/gans-story-so-far/

• A Beginner’s Guide to Generative Adversarial Networks (GANs). https://skymind.ai/wiki/
generative-adversarial-network-gan

The resources I highly recommend are Ian GOODFELLOW’s tutorial [4] and Stanford CS231n lecture
13 "Generative models" [2]. GOODFELLOW’s article [4] comes with the video on the conference
he gave and is available at https://www.youtube.com/watch?v=HGYYEUSm-0Q. Stanford’s lecture [2]
was recorded and is available at https://www.youtube.com/watch?v=5WoItGTWV54&list=PLC1qU-
LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=14&t=0s. For any concepts of Deep Learning, GOODFEL-
LOW’s book [3] is a reference and is available at https://www.deeplearningbook.org/.

For information, the Deep Learning textbook [3] (by GOODFELLOW et al) dedicates 4 pages (690-693)
on GANs (subsection 20.10.4).

This chapter is a general presentation on GANs. In this chapter, we do not try to apply GANs to the
pharmaceutical world. We will explain some preliminary notions, go into the details of how GANs
work (up to its fundamental equation (I.3)) and explain why we chose GANs over other existing
methods. Finally, as GANs’ main application is computer vision, we will apply GANs to medical
imaging and take part in one of Servier Data Science team’s project about IRM (nuclear magnetic
resonance) of knees.

We will apply GANs to electronic health records (EHR) only in chapter II.

11

https://machinelearningmastery.com/resources-for-getting-started-with-generative-adversarial-networks/
https://machinelearningmastery.com/resources-for-getting-started-with-generative-adversarial-networks/
https://blog.floydhub.com/gans-story-so-far/
https://skymind.ai/wiki/generative-adversarial-network-gan
https://skymind.ai/wiki/generative-adversarial-network-gan
https://www.youtube.com/watch?v=HGYYEUSm-0Q
https://www.youtube.com/watch?v=5WoItGTWV54&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=14&t=0s
https://www.youtube.com/watch?v=5WoItGTWV54&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=14&t=0s
https://www.deeplearningbook.org/

Contents
I.1 Some preliminary notions . 13

I.1.1 Supervised vs. unsupervised learning . 13

I.1.2 What is a generative model? . 13

I.1.3 Why are generative models interesting? . 15

I.1.4 A few important concepts and facts of machine learning 16

I.1.4.a About the training dataset . 16

I.1.4.b About deep learning . 18

I.1.4.c Maximum Likelihood Estimation . 19

I.1.4.d Kullback-Leibler (KL) divergence . 19

I.2 How do GANs work? . 21

I.2.1 The principle: generator vs discriminator . 21

I.2.2 The two-player minimax game . 23

I.2.3 Gradient descent . 23

I.2.4 Application: some simulations with TensorFlow and GAN Lab 26

I.3 Comparison of GANs with other generative models 26

12

I.1 Some preliminary notions

I.1.1 Supervised vs. unsupervised learning

This subsection is taken from Stanford’s lecture [2].

In supervised learning, we have labeled training data: we have some data x and some labels y . The
goal is to learn a function that is mapping from the data x to the labels y . These labels can take
different types of forms, for example categories of animals or captions of images. Regression is an
example of supervised learning.

In the unsupervised learning setting, we have unlabeled training data: we only have some data
x with no labels y . The goal is to learn some underlying hidden structure of the data x (for ex-
ample grouping, axes of variation, underlying density estimation...). Clustering is an example of
unsupervised learning.

Compared to supervised learning, unsupervised learning is less expensive because we do not need
to train on labels. By comparison to supervised learning, unsupervised learning is still an unsolved
research area. On the other hand, the potential of unsupervised learning is more interesting because
it detects itself inherent structures in the data x. According to [14],

« Today, AI programmers often need to tell a machine exactly what’s in the training data
it’s being fed – which of a million pictures contain a pedestrian crossing a road, and which
don’t. This is not only costly and labor-intensive; it limits how well the system deals with
even slight departures from what it was trained on. In the future, computers will get much
better at feasting on raw data and working out what they need to learn from it without
being told.

That will mark a big leap forward in what’s known in AI as “unsupervised learning.” A
self-driving car could teach itself about many different road conditions without leaving
the garage. A robot could anticipate the obstacles it might encounter in a busy warehouse
without needing to be taken around it. »

I.1.2 What is a generative model?

This subsection is taken from Stanford’s lecture [2] and GOODFELLOW’s tutorial [4].

Generative models are a type of unsupervised learning. The goal of a generative model is, given
training data, to generate new samples from the same distribution (as the training data). We want
to learn a model pmodel(x) which is similar to pdata(x), with pdata(x) being unknown. Generative
models address density estimations, a core problem in unsupervised learning.

There are two types of generative models:

• explicit density estimation: explicitly define and solve for pmodel(x),

• implicit density estimation: learn a model that can sample from pmodel(x) without explicitly
defining pmodel(x).

An example of explicit density estimation is given figure I.1: Gaussian model for a one-dimensional
learning database. A generative model with explicit density estimation is based on a set of examples
drawn from an unknown data-generating distribution pdata(x) and outputs an estimation pmodel(x)

13

of this distribution. The estimated model pmodel(x) can be evaluated for a particular value x0 in
order to obtain an estimate pmodel(x0) of the true density pdata(x0). We can sample new data from
pmodel(x).

Figure I.1: An example of explicit density estimation
Source: GOODFELLOW’s tutorial [4]

An example of implicit density estimation is given figure I.2. Of course, for the training data, we
have a lot more images than the three that are shown. Once we have learned pmodel(x), we can
generate as many samples as we want.

training data from pdata(x) generated samples from pmodel(x)

Figure I.2: An example of implicit density estimation
Source: Stanford CS231n [2]

GANs are an implicit density estimation problem. I will provide more details in section I.2.

A taxonomy of generative models is shown in figure I.3. The most popular are PixelRNN/CNN,
Variational Autoencoder (VAE) and GANs. According to Wikipedia, in the computational complexity
theory, « tractable » means « a problem that can be handled ». In particular, we can not optimize
directly an intractable density function. For intractable problems, we can only have the approximate
density (and not the exact one as with tractable problems).

Figure I.3: A taxonomy of generative models
Source: Stanford CS231n [2]

14

I.1.3 Why are generative models interesting?

Generative models have several very useful applications: colorization, super-resolution, generation
of artworks, etc. In general, the advantage of using a simulated model over the real model is that
the computation can be faster.

Many interesting examples are given in GOODFELLOW’s tutorial [4] and Stanford’s lecture [2]. In
particular, examples given by GOODFELLOW in the conference « Generative Adversarial Networks
(NIPS 2016 tutorial) », from 4:15 to 12:33, are impressive and I highly recommend watching them.
The link to this video, on which the paper [4] is based, is the following: https://www.youtube.com/
watch?v=HGYYEUSm-0Q.

We are now going to give three examples where the generative aspect is very useful. These examples
are taken from GOODFELLOW’s tutorial [4].

A first example of GANs’ results is given figure I.4. The generation of these fictional celebrity
portraits, from the database of real portraits CELEBA-HQ composed of 30 000 images, took 19 days.
The generated images have a size of 1024×1024 but have been compressed in this report. These
portraits are very realistic.

Figure I.4: Realistic fictional portraits of celebrities generated from originals using GANs
Source: Nvidia [10]

An article from the MIT Technology Review [14] states about figure I.4:

« In one widely publicized example last year, researchers at Nvidia, a chip com-
pany heavily invested in AI, trained a GAN to generate pictures of imaginary
celebrities by studying real ones. Not all the fake stars it produced were perfect,
but some were impressively realistic. »

A second example is given figure I.5. These real images are transposed into realistic fictional images
- or vice versa - with the CycleGan developed by researchers at the University of Berkeley. The
concept, called image-to-image translation, is a class of vision and graphics problems where
the goal is to learn the mapping between an input image and an output image using a training

15

https://www.youtube.com/watch?v=HGYYEUSm-0Q
https://www.youtube.com/watch?v=HGYYEUSm-0Q

Figure I.5: CycleGAN: real images transposed into realistic fictional images using GANs
Source: Berkeley AI Research (BAIR) laboratory [11]

set of aligned image pairs. There exists a tutorial about CycleGAN on Tensorflow: https://www.
tensorflow.org/beta/tutorials/generative/cyclegan.

The third and last example is shown in figure I.6. For example, the aerial to map feature can be very
useful to Google Maps or similar applications.

Figure I.6: Several types of image transformations using GANs
Source: Berkeley AI Research (BAIR) Laboratory [12]

We can note that most GANs’ applications are computer vision (or at least image retlated). We will
see in chapter II that it is possible, to a certain extent, to apply GANs to electronic health records
(EHR).

I.1.4 A few important concepts and facts of machine learning

I.1.4.a About the training dataset

ä Let us not be confused by the term "generative model": AI is not creative, it can only learn
from the training database. Thus, in addition to code quality, a quality training database

16

https://www.tensorflow.org/beta/tutorials/generative/cyclegan
https://www.tensorflow.org/beta/tutorials/generative/cyclegan

is required to obtain consistent output results: unbiased, with a lot of samples and good
features.

ä When our learning dataset is small (not enough samples), it is difficult to build a relevant
model. For example, we may have the problem of overfitting.

The Deep Learning textbook [3] pages 18-20 on the importance a large training dataset:

« It is true that some skill is required to get good performance from a deep learning algorithm.
Fortunately, the amount of skill required reduces as the amount of training data increases.
The learning algorithms reaching human performance on complex tasks today are nearly
identical to the learning algorithms that struggled to solve toy problems in the 1980s, though
the models we train with these algorithms have undergone changes that simplify the training
of very deep architectures. The most important new development is that today we can provide
these algorithms with the resources they need to succeed. [...] The age of “Big Data” has made
machine learning much easier because the key burden of statistical estimation – generalizing
well to new data after observing only a small amount of data – has been considerably lightened.
As of 2016, a rough rule of thumb is that a supervised deep learning algorithm will generally
achieve acceptable performance with around 5,000 labeled examples per category and will
match or exceed human performance when trained with a dataset containing at least 10
million labeled examples. »

It is important to keep these orders of magnitude in mind. However, an article from the MIT
Technology Review [14] explains that:

« Unlike other machine-learning approaches that require tens of thousands of training images,
GANs can become proficient with a few hundred. ».

ä The Deep Learning textbook [3] page 3 on the importance of choosing good features for our
training dataset:

« The performance of these simple machine learning algorithms depends heavily on the
representation of the data they are given. [...] [For example,] people can easily perform
arithmetic on Arabic numerals but find arithmetic on Roman numerals much more time
consuming. [...] Many artificial intelligence tasks can be solved by designing the right set of
features to extract for that task, then providing these features to a simple machine learning
algorithm. For example, a useful feature for speaker identification from sound is an estimate
of the size of the speaker’s vocal tract. This feature gives a strong clue as to whether the
speaker is a man, woman, or child. For many tasks, however, it is difficult to know what
features should be extracted. »

ä We do not really care about the performance of a classifier on training data: we use training
data to find some classifier and then we apply this classifier on test data (thus we try to avoid
overfitting).

Our model should be "simple" to make our model work on test data: we can use regulariza-
tion in the loss function to encourage our model to be "simple". The concept of "simple"
depends on the task and the model. If we have many different competing hypothesis on
some observations, we should prefer the simpler one because it is the one that is more likely
to generalize to new observations in the future. For example, if we have to choose between
several polynomial models that fit our training data, we prefer the model with the lowest
degree.

17

I.1.4.b About deep learning

ä When a distribution is complicated, it is more appropriate to try to estimate it using neural
networks [2]. In particular, deep networks have the ability to learn complex patterns from
data because it enables the computer to build complex concepts out of simpler concepts [3].
As we will see later, GANs use two neural networks.

ä The Deep Learning textbook [3] pages 14 and 16 on the influence of neuroscience on deep
learning:

« Today, neuroscience is regarded as an important source of inspiration for deep learning
researchers, but it is no longer the predominant guide for the field. The main reason for the
diminished role of neuroscience in deep learning research today is that we simply do not have
enough information about the brain to use it as a guide. [...] one should not view deep learning
as an attempt to simulate the brain. Modern deep learning draws inspiration from many
fields, especially applied math fundamentals like linear algebra, probability, information
theory, and numerical optimization. »

ä For computer vision, deep learning is mostly used nowadays.

ä According to the Deep Learning textbook [3] page 12, « deep learning dates back to the 1940s.
Deep learning only appears to be new, because it was relatively unpopular for several years
preceding its current popularity, and because it has gone through many different names, only
recently being called “deep learning.” »

ä In 2018, Yoshua BENGIO, Geoffrey HINTON and Yann LECUN won the Turing Award – the
"Nobel Prize of computing" – for conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing. BENGIO was one of GOODFELLOW’s
doctoral advisor and is the co-author of the Deep Learning textbook [3].

ä The Deep Learning textbook [3] page 12 on how deep learning became so popular:

« we identify a few key trends:

• Deep learning has had a long and rich history, but has gone by many names, reflecting
different philosophical viewpoints, and has waxed and waned in popularity.

• Deep learning has become more useful as the amount of available training data has
increased.

• Deep learning models have grown in size over time as computer infrastructure (both
hardware and software) for deep learning has improved.

• Deep learning has solved increasingly complicated applications with increasing accuracy
over time. »

ä According to [3] page 14, slightly modified versions of the stochastic gradient descent (SGD)
algorithm are the dominant training algorithms for deep learning models today. Let us note
that the step size (also called learning rate) is a hyperparameter.

According to Stanford CS231n lecture 3 (available at https://www.youtube.com/watch?v=
h7iBpEHGVNc&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=3), the most popular loss
function for deep learning is the softmax loss (also called cross-entropy loss).

A full lecture on loss functions and gradient descent is given by Stanford CS231n lecture 3.

18

https://www.youtube.com/watch?v=h7iBpEHGVNc&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=3
https://www.youtube.com/watch?v=h7iBpEHGVNc&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=3

I.1.4.c Maximum Likelihood Estimation

This paragraph is taken from the Deep Learning textbook page 128 [3].

The maximum likelihood estimation is a fundamental concept in machine learning. In this report,
we will only make a short review.

Consider a set of m examples X =
{
xxx(1), . . . ,xxx(m)

}
drawn independently from the true but unknown

data-generating distribution pdata(xxx).

Let pmodel(xxx;θθθ) be a parametric family of probability distributions over the same space indexed
by θθθ. In other words, pmodel(xxx;θθθ) maps any configuration xxx to a real number estimating the true
probability pdata(xxx).

The maximum likelihood estimator (MLE) for θθθ is then defined as:

θθθML = argmax
θθθ

pmodel(X;θθθ)

= argmax
θθθ

m∏
i =1

pmodel(xxx
(i);θθθ)

This product over many probabilities can be inconvenient for various reasons. For example, it is
prone to numerical underflow. To obtain a more convenient but equivalent optimization prob-
lem, we observe that taking the logarithm of the likelihood does not change its arg max but does
conveniently transform a product into a sum:

θθθML = argmax
θθθ

m∑
i =1

log pmodel(xxx
(i);θθθ)

Because the arg max does not change when we rescale the cost function, we can divide by m to
obtain a version of the criterion that is expressed as an expectation with respect to the empirical
distribution p̂data defined by the training data:

θθθML = argmax
θθθ

Exxx∼p̂data log pmodel(xxx;θθθ) (I.1)

In the rest of this report, we will use equation (I.1).

I.1.4.d Kullback-Leibler (KL) divergence

This paragraph is taken from the Deep Learning textbook pages 71 and 72 [3].

If we have two separate probability distributions P (x) and Q(x) over the same random variable x, we
can measure how different these two distributions are using the Kullback-Leibler (KL) divergence:

DKL(P‖Q) = Ex∼P

[
log

P (x)

Q(x)

]
= Ex∼P

[
logP (x)− logQ(x)

]
(I.2)

In the case of discrete variables, it is the extra amount of information (measured in bits if we use the
base-2 logarithm, but in machine learning we usually use nats and the natural logarithm) needed
to send a message containing symbols drawn from probability distribution P , when we use a code
that was designed to minimize the length of messages drawn from probability distribution Q.

19

The KL divergence has many useful properties, most notably being non-negative. The KL divergence
is 0 if and only if P and Q are the same distribution in the case of discrete variables, or equal “almost
everywhere” in the case of continuous variables. Because the KL divergence is non-negative
and measures the difference between two distributions, it is often conceptualized as measuring
some sort of distance between these distributions. It is not a true distance measure because it is
not symmetric: DKL(P‖Q) 6= DKL(Q‖Q) for some P and Q. This asymmetry means that there are
important consequences to the choice of whether to use DKL(P‖Q) or DKL(Q‖P).

KL divergence is used in generative models to compare the real data distribution to the estimated
one.

Note: We could use KL divergence to measure the accuracy of our fictitious generated dataset
compared to the origiinal real-life dataset. I will not do it in this report due to the lack of time.

20

I.2 How do GANs work?

This section is taken from Stanford’s lecture [2].

As introduced earlier, generative adversarial networks (GANs) are a generative model with implicit
density estimation, part of unsupervised learning and are using two neural networks. We thus
understand the terms "generative" and "networks" in "generative adversarial networks".

Thus, GANs do not use an explicit density function and we are only interested in the ability to
generate new samples from the distribution. GANs are based on a game-theoretic approach: GANs
learn to generate from a training distribution through a two-player game.

The main difficulty is that we want to sample from a complex and high-dimensional training
distribution. There is no direct method. One solution (the one we will use) is to generate from a
simple distribution: random noise. We will learn a transformation from this simple distribution to
the training distribution. We use a neural network to represent this complex transformation.

As shown in figure I.7, to each sample in the training dataset, we associate a random noise z, which
is a vector of chosen dimension. Note that by using random noise, we introduce a hazard and
ensure that the data generated by the generator is not all identical.

Figure I.7: Role of the random noise
Source: Stanford CS231n [2]

I.2.1 The principle: generator vs discriminator

The principle is a two-player game: a neural network called the generator and a neural network
called the discriminator. The generator tries to fool the discriminator by generating real-looking
images while the discriminator tries to distinguish between real images and fake images. We then
understand the term "adversarial" in "generative adversarial networks". See figure I.8.

Figure I.8: Roles of the generator and the discriminator
Source: Stanford CS231n [2]

21

Figure I.9: Interpretation: roles of the generator and the discriminator
Source: https://www.tensorflow.org/beta/tutorials/generative/dcgan

The generator can be interpreted as an artist and the discriminator as an art critic. See figure I.9.

During training, the generator progressively becomes better at creating images that look real, while
the discriminator becomes better at telling them apart. The process reaches equilibrium when
the discriminator can no longer distinguish real images from fake. See figure I.10. Thus, if the
discriminator is well trained and the generator manages to generate real-looking images that fool
the discriminator, then we have a good generative model: we are generating images that look like
the training set. The discriminator may then be discarded. The random noise z guarantees that the
generator does not always produce the same image (which can deceive the discriminator).

Figure I.10: Generator and discriminator training
Source: https://www.tensorflow.org/beta/tutorials/generative/dcgan

Note that at the beginning of the training, the generator only generates a random noise that does
not resemble the training data.

22

https://www.tensorflow.org/beta/tutorials/generative/dcgan
https://www.tensorflow.org/beta/tutorials/generative/dcgan

I.2.2 The two-player minimax game

The generator G and the discriminator D are jointly trained in a two-player minimax game formu-
lation. The minimax objective function is:

min
θg

max
θd

[
Ex∼pdata logDθd (x)+Ez∼p(z) log

(
1−Dθd

(
Gθg (z)

))]
(I.3)

where θg is the parameters of G and θd is the parameters of D .

In the following, we simply refer to Dθd as D and Gθg as G .

By definition, D outputs the likelihood (see I.1.4.c) of real image in interval [0,1]:

• D(x) equals 1 (or is close to 1) if D considers that x is a real data

• D(x) equals 0 (or is close to 0) if D considers that x is a fake data (e.g. a generated data).

We can prove that, at the equilibrium, D outputs 1/2 everywhere because D can not distinguish
fake generated data from real data.

Because x ∼ pdata, x is a real data. By definition of G , G(z) is a fake generated data. x would be a
real-life image of a cat and G(z) would be a fake generated image of a cat. Thus, D(x) is the output of
the discriminator for a real input x (since x ∼ pdata) and D (G(z)) is the output of the discriminator
for a fake generated data G(z).

GOODFELLOW wrote the two-player minimax game (I.3) such that θg and θd evolve so that the
following points are true:

• The discriminator D tries to distinguish between real data x and fake data G(z).

More precisely, the discriminator D plays with θd (θg being fixed) to maximize the objective
function such that D(x) is close to 1 (x is real) and such that D (G(z)) is close to 0 (a generated
data is detected as false).

• The generator G tries to fool the discriminator D into thinking that its fake generated data is
real.

More precisely, the generator G plays with θg (θd being fixed) to minimize the objective
function such that D (G(z)) is close to 1 (a false generated data is detected as true by the
discriminator).

Although we are in unsupervised learning (the data is not labeled), we choose that the data generated
by G has a 0 label for false (regardless of what the discriminator returns) and the real learning data
has a 1 label for true. We can thus define a loss function.

GOODFELLOW’s first paper on GANs [1] demonstrates that the minimax game has a global (and
unique) optimum for pg = pdata where pg is the generative distribution and pdata the real data
distribution.

I.2.3 Gradient descent

We consider the problem given by equation (I.3).

For the training, we will alternate between:

23

1. gradient ascent on the discriminator:

max
θd

[
Ex∼pdata logDθd (x)+Ez∼p(z) log

(
1−Dθd

(
Gθg (z)

))]
(I.4)

2. gradient descent on the generator:

min
θg

[
Ez∼p(z) log

(
1−Dθd

(
Gθg (z)

))]
(I.5)

Let us note that for (I.5), we only keep the term on the right in (I.3) because it is the only one that is
dependent on θg .

As can be seen in figure I.11, the landscape of the generator objective log(1−D(G(z))) for D (G(z))
is not efficient. Indeed, we want to minimize this function whose slope is higher towards the right,
i.e. when D(G(z)) is close to 1. That is tantamount to saying that when the generator succeeds in
distinguishing a false data from a real one, i.e. D(G(z)) is close to 1, the gradient will be high. On the
other hand, when the generator has not yet learned to distinguish properly between false data and
actual data, i.e. D(G(z)) is close to 0, the gradient is almost horizontal. Thus, the gradient is high in
the regions for which the generator is already well trained, whereas we want the generator to learn
mainly from areas where it is bad: we want a high slope in the regions where D(G(z)) is close to 0.

Figure I.11: Gradient descent on the generator
Source: Stanford CS231n [2]

Basically, we want the steps to be high (thus high gradient values) in the regions where we are far
away from the optimum (i.e. to the left where D(G(z)) is close to 0) and we want the steps to be
small (thus low gradient values) when we are close to the optimum (i.e. to the right where D(G(z))
is close to 1).

So, to improve learning, instead of equation I.5, we choose a different objective function. Equation
I.5 tries to minimize the likelihood of the discriminator being right. We are now trying to maximize
the likelihood of the discriminator being wrong:

max
θg

[
Ez∼p(z) log

(
Dθd

(
Gθg (z)

))]
(I.6)

The purpose is the same: fooling the discriminator. On the other hand, as we can see on figure I.12,
the gradient is high for regions where D(G(z)) is close to 0: we will train the generator more in the
regions where the generated samples are bad.

24

Figure I.12: Gradient ascent on the generator
Source: Stanford CS231n [2]

After taking into account the remarks we made, we obtain the algorithm 1. We successively train
the discriminator first, then the generator.

Algorithm 1 GAN training
1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samples {zzz(1), . . . ,zzz(m)} from noize prior pg (zzz). . for the

fake data
4: Sample minibatch of m noise samples {xxx(1), . . . ,xxx(m)} from data generating distribution

pdata(x). . for the real data
5: Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i =1

[
logDθd

(
xxx(i)

)
+ log

(
1−Dθd

(
Gθg

(
zzz(i)

)))]
6: end for
7: Sample minibatch of m noise samples {zzz(1), . . . ,zzz(m)} from noize prior pg (zzz).
8: Update the generator by ascending its stochastic gradient (improved objective):

∇θg

1

m

m∑
i =1

logDθd

(
Gθg

(
zzz(i)

))
9: end for . The gradient-based updates can use any standard gradient-based learning-rule.

Note that there are discussions on the value of k: some think that k = 1 gives more stability while
others think that k > 1 is needed.

GOODFELLOW’s first paper on GANs [1] demonstrates that the GAN training algorithm 1 optimizes
the minimax formulation (I.3), thus obtaining the desired result.

After this training phase, we only need the generator to sample new (false) realistic data. We no
longer need the discriminator.

25

I.2.4 Application: some simulations with TensorFlow and GAN Lab

There are some very interesting tutorials on GANs provided by TensorFlow (open source tool for
machine learning developed mainly by Google, in particular available as a package on Python):

• Generating Handwritten Digits with DCGAN on TensorFlow 1.13: https://GitHub.com/
tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_
examples/dcgan.ipynb

• Deep Convolutional Generative Adversarial Network on TensorFlow 2.0: https://www.
tensorflow.org/beta/tutorials/generative/dcgan

• CycleGAN on TensorFlow 2.0: https://www.tensorflow.org/beta/tutorials/generative/
cyclegan

I highly recommend running at least of of the above tutorials. They provide the dataset, the code
and the explanations that allow us to apply these methods, thus help understand how GANs work.
These tutorials are in the ipynb format, they can be opened in Jupyter Notebook from Anaconda
(for example). To avoid having to install TensorFlow on your computer, it is possible to execute the
code directly on Google Colab’s servers. Note that TensorFlow 2.0 is a beta version and that in this
project we will use TensorFlow 1.2.

Another fundamental application is the GAN Lab [9], accessible at the following link: https:
//poloclub.github.io/ganlab/. The GAN Lab is a website that enables an interactive visual exper-
imentation of the learning of the generator and the discriminator. For visualization purposes, the
data are not images but two-dimensional points.

I.3 Comparison of GANs with other generative models

The goal of this section is to review the models given in the figure I.3 to justify our choice of GANs.

As this choice is based on computer vision, which is not the core of this report (electronic health
records are), we are not going to detail them here. One can refer to GOODFELLOW’s tutorial [4] and
Stanford’s lecture [2]. Stanford’ lecture 13 on generative models explains only the most popular
methods: PixelRNN/CNN, VAEs and GANs.

26

https://GitHub.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/dcgan.ipynb
https://GitHub.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/dcgan.ipynb
https://GitHub.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/dcgan.ipynb
https://www.tensorflow.org/beta/tutorials/generative/dcgan
https://www.tensorflow.org/beta/tutorials/generative/dcgan
https://www.tensorflow.org/beta/tutorials/generative/cyclegan
https://www.tensorflow.org/beta/tutorials/generative/cyclegan
https://poloclub.github.io/ganlab/
https://poloclub.github.io/ganlab/

Chapter II

Application of GANs to electronic health
records (EHR)

This chapter is an application of the GAN concept introduced in chapter I. As we have seen, GANs
are mainly used for computer vision as well as natural language processing (NLP). In this chapter,
we try to extend the range of GANs to electronic health records (EHR).

In the first section, we present the theoretical approach: medGAN. medGAN stands for "medical
generative adversarial network". The scientific article on which we mostly rely is [5]:

Edward CHOI et al. Generating Multi-label Discrete Patient Records using
Generative Adversarial Networks. arXiv:1703.06490v3, 2018.

This article, written in particular by researchers at the Georgia Institute of Technology, introduces
the concept of medGAN which will be presented at subsection II.1.3. medGAN is a combination of
GANs and autoencoders in order to apply GANs to electronic health records (EHR). We present
autoencoders at subsection II.1.2. In the first section, we will also see how Servier can benefit from
GANs (or in this case, from medGAN).

I would like to thank Edward CHOI again: I was able to ask him a few questions by email and he was
always very helpful. His email is mp2893@gatech.edu. In order to communicate with the community,
we can open an issue on the GitHub repository: https://github.com/mp2893/medgan/issues/.
Edward CHOI seems to be very responsive on his GitHub as well.

In the second section, we will implement medGAN, explain the code and present the results. Rather
than writing everything in this report, my work on the datasets and coding can be found on my own
GitHub repository about medGAN: https://github.com/sylvaincom/medgan-tips. I am glad that I
was able to make a small contribution to Edward Choi’s code:

• Fixing an error due to version 1.16.3 of NumPy: https://github.com/mp2893/medgan/pull/15

• Fixing an error when running step 2-3 with count variables: https://github.com/mp2893/
medgan/pull/17

In this report, I add details but the core of the algorithmic implementation is on my GitHub
repository.

In the third section, I present the experimental results on the MIMIC-III dataset (which is public)
and also on the Datasphere data (from Servier).

27

mailto:mp2893@gatech.edu
https://github.com/mp2893/medgan/issues/
https://github.com/sylvaincom/medgan-tips
https://github.com/mp2893/medgan/pull/15
https://github.com/mp2893/medgan/pull/17
https://github.com/mp2893/medgan/pull/17

Contents
II.1 Theoretical approach: medGAN . 29

II.1.1 How can Servier benefit from GANs? . 29

II.1.1.a Privacy of patients’ personal data . 29

II.1.1.b Dataset augmentation in order to make better predictions 29

II.1.2 What are autoencoders? . 30

II.1.3 How does medGAN work? . 33

II.1.3.a What does medGAN do? . 33

II.1.3.b Description of EHR Data and Notations 34

II.1.3.c Combining GANs with an autoencoder 34

II.2 Algorithmic implementation . 36

II.2.1 The medGAN program from Edward CHOI’s GitHub 36

II.2.1.a Edward CHOI’s GitHub . 36

II.2.1.b The free and public MIMIC-III dataset 36

II.2.2 Explanation of the code’s steps . 37

II.2.2.a Explanation of the steps of process_mimic.py 37

II.2.2.b Explanation of the steps of medgan.py 37

II.2.2.c Running the code . 38

II.3 Experimental results . 39

II.3.1 For the MIMIC-III dataset of shape (46 520, 1 071) with binary values 39

II.3.1.a Accuracy of the (fictitious) generated data 39

II.3.1.b Boosting the prediction score with dataset augmentation 40

II.3.2 For the MIMIC-III dataset of shape (1 000, 100) with binary values 41

II.3.2.a Accuracy of the (fictitious) generated data 41

II.3.2.b Boosting the prediction score (5-fold cross-validation) with dataset
augmentation . 42

II.3.2.c Boosting the prediction score (on a proper test set) with dataset
augmentation . 45

II.3.3 For the MIMIC-III dataset of shape (46 520, 1 071) with count values 47

II.3.4 For the MIMIC-III dataset of shape (1 000, 100) with count values 49

II.3.4.a Accuracy of the (fictitious) generated data 49

II.3.4.b Boosting the prediction score (on a proper test set) with dataset
augmentation . 50

28

II.1 Theoretical approach: medGAN

II.1.1 How can Servier benefit from GANs?

II.1.1.a Privacy of patients’ personal data

Healthcare organizations (HCOs) have tried the de-identification method in order to protect the
privacy of their patients. For de-idenfication, HCOs performed perturbation of potentialy identifi-
able attributes (e.g. dates of birth) via generalization, suppression or randomization. However, it is
still possible to re-identify through the residual information [8].

In CHOI’s paper [5], medGAN is mainly used for privacy purposes: instead of sending the original EHR
data (that can be re-identified) to researchers, we can send them the fictitious realistic generated
data.

The paper [5] concludes that « our privacy experiments indicate that medGAN does not simply
remember the training samples and reproduce them. Rather, medGAN generates diverse synthetic
samples that reveal little information to potential attackers unless they already possess significant
amount of knowledge about the target patient. »

CHOI considers two definitions of privacy:

• Presence disclosure occurs when an attacker can determine that medGAN was trained with a
dataset including the record from patient x.

• Attribute disclosure occurs when attackers can derive additional attributes such as diagnoses
and medications about patient x based on a subset of attributes they already know about x.

II.1.1.b Dataset augmentation in order to make better predictions

Why is machine learning essential to Servier? The PEX MVD applies artificial intelligence (more
precisely machine learning) to patient data in order to make predictions. For example, it can try to
predict whether a drug will have a positive impact or not, taking into account some features of the
patient (age, weight, height, etc.). An article from the MIT Technology Review explains how an AI
system identified a potential new drug in just 46 days [16]. According to [16], « The system examines
previous research and patents for molecules known to work against the drug target, prioritizing
new structures that could be synthesized in the lab. It’s similar to what a human chemist might do
to seek new therapies – just much faster. [...] Getting a new drug to market is hugely costly and
time consuming: it can take 10 years and cost as much as $2.6 billion, with the vast majority of
candidates failing at the testing stage ».

In order to train machine learning algorithms, a large amount of training data is required. Computa-
tional health is on the rise. In France, the Health Data Hub, a platform for the exploitation of health
data, was created in 2019 following the Villani report on AI. The Health Data Hub’s goal is to increase
the potential for the exploitation of health data, in particular in the areas of research, support for
health personnel, health system management, monitoring and patient information. However, due
to the confidentiality of patient data (among other reasons), EHR are generally limited in number:
they are scarce. We are very far from the Big Data framework.

With GANs, we want to generate fictitious realistic patient data, which can then enrich the initial
real-life training database. For example, my training dataset A is not large enough (let it be 500

29

samples with 50 features) and we want to use medGAN to generate a new dataset B of 1 000 fictitious
samples (with 50 features as well). By adding B to A, we get a new training dataset C that has 1 500
patients. We can hope that C helps algorithms (any one of them) make better predictions than A.
However, the main issue would be that we want to enrich the original training dataset A but the
new dataset B is actually "based" on the original training set A.

I asked CHOI what he thought about using the generative model GANs for dataset augmentation.
Trying to generate fictitious realistic patients with medGAN from a dataset of 500 samples with 250
variables seems suboptimal: there seems to be too many variables and not enough samples. There
is no definite number as to how many variables we need to delete: it depends on the variance
of each variable and the correlation between variables. For example, if there is a variable named
"gender" and all 500 samples are from men (thus low variance), then it would be very easy for
medGAN to replicate that variable (by putting men as gender for each generated sample).

The "Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic
Health Records" paper [6] aims at mimicking real patient records to augment the training dataset in
order to improve the prediction performance. The introduction states the following reasons for the
shortage of samples in EHR:

« the amount of clinical data, especially with accurate labels and for rare diseases and
conditions, is somewhat limited and far from most models’ requirements. This comes
from the following reasons: The diagnosis and patient labeling process highly relies
on experienced human experts and is usually very time-consuming; Getting detailed
results of lab tests and other medical features, though has become more feasible with
modern facilities than ever, are still quite costly; Not to mention the privacy issues and
regulations which makes it even harder to collect and keep enough medical data with
desired details. These unique challenges lying in healthcare domain prevent existing
deep learning models from exerting their strength with enough available and high-quality
labeled data. »

Section 7.4 pages 233 and 234 of the Deep Learning textbook [3] is dedicated to dataset augmenta-
tion:

« The best way to make a machine learning model generalize better is to train it on more
data. Of course, in practice, the amount of data we have is limited. One way to get around
this problem is to create fake data and add it to the training set. For some machine
learning tasks, it is reasonably straightforward to create new fake data. [...] Dataset
augmentation has been a particularly effective technique for a specific classification
problem: object recognition. »

II.1.2 What are autoencoders?

In order to understand how medGAN works, we first need to understand how autoencoders work.

This subsection is taken from Stanford’s lecture [2].

Autoencoders are an unsupervised approach for learning a lower-dimensional feature representa-
tion from unlabeled training data. Autoencoders alone can not generate data.

As shown in figure II.1, we have some input data xxx and we want to learn some feature zzz. The
encoder is a function mapping from xxx to zzz. The encoder can take different forms but we generally

30

use neural networks. Originally, in the 2000s, we used linear layers of nonlinearity (sigmoid). Then,
we used fully connected deeper networks. Later, we used CNNs with ReLU.

Figure II.1: Representation of the encoder
Source: Stanford CS231n [2]

Figure II.2: Representation of the encoder and
the decoder

Source: Stanford CS231n [2]

We usually specify zzz to be smaller than xxx by performing dimensionality reduction. We want to
use dimensionality reduction because we want zzz to be able to learn features that can capture
meaningful factors of variation in the data, which make zzz a good feature.

In order to learn this feature representation, we train the model such that the features can be used to
reconstruct the original data, as shown in figure II.2. The term « autoencoding » means « encoding
itself ». We use the encoder to map the input data xxx to some lower-dimensional features zzz. We
use the decoder, another neural network, to map these features zzz to x̂̂x̂x which is an estimation of
the original input data xxx. In other words, x̂̂x̂x is a reconstruction of xxx. In particular, x̂̂x̂x has the same
dimensionality as xxx. For the decoder, we use the same type of networks as the encoder but it is
symmetric.

An example of reconstruction is given figure II.3. In this example, we are using a convolutional
network for the encoder and an upconvolutional network for the decoder because zzz has a lower
dimension than xxx and x̂̂x̂x. We can see that the reconstructed images are not as sharp as the original
ones but the reconstructed images keep the most important characteristics of the original ones.

We try to make the pixels in the reconstructed data x̂̂x̂x to be the same as the pixels in the input data xxx.
In order to reconstruct the input data xxx, we use a loss function, for example L2:

‖xxx − x̂̂x̂x‖2 (II.1)

It is important to note that even though we compute a loss function, there are no external labels
being used in the training. We only need the unlabeled training data to compute the loss function.

Once the training is complete, we no longer need the decoder, which was only useful to compute
the loss function. We can use the encoder to initialize a supervised model with better features zzz, as
explained in figure II.4.

As a conclusion, we can use a lot of unlabeled training data to try and learn good general feature
representations. In cases where we do not have enough input data x, we can use the encoder
to initialize a supervised learning problem with better features z. Indeed, when we do not have
enough input data, it is hard to learn a good model, for example we have overfitting.

According to the Deep Learning textbook [3] page 4, the autoencoder is the quintessential example
of representation learning algorithms.

The features zzz capture factors of variation in the training data xxx. zzz is called a latent variable.
According to Wikipedia, latent variables are variables that are not directly observed but are rather

31

Figure II.3: An example of reconstruction
Source: Stanford CS231n [2]

Figure II.4: The encoder can be used to initialize a supervised model.
Source: Stanford CS231n [2]

32

inferred (through a mathematical model) from other variables that are observed (directly measured).
This latent variable zzz is used in variational autoencoders (VAEs), which is another generative model
that we will not explain in this report.

We can find some very interesting tutorials on implementing VAEs with TensorFlow:

• Convolutional VAE: An example with tf.keras and eager on Tensorflow 1.13 : https://GitHub.
com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_
examples/cvae.ipynb

• Convolutional Variational Autoencoder on TensorFlow 2.0 : https://www.tensorflow.org/
beta/tutorials/generative/cvae?.

II.1.3 How does medGAN work?

This subsection is taken from Edward CHOI’s paper [5].

In this subsection, we will only address one type of method for generating synthetic electronic health
records (EHR): medGAN. As a recall, medGAN stands for "medical generative adversarial network".
Some of these other methods are presented in section « 2. Related work » of CHOI’s paper [5].

Here is the abstract of the paper:

« Access to electronic health record (EHR) data has motivated computational advances in
medical research. However, various concerns, particularly over privacy, can limit access
to and collaborative use of EHR data. Sharing synthetic EHR data could mitigate risk.

In this paper, we propose a new approach, medical Generative Adversarial Network
(medGAN), to generate realistic synthetic patient records. Based on input real patient
records, medGAN can generate high-dimensional discrete variables (e.g., binary and count
features) via a combination of an autoencoder and generative adversarial networks. We
also propose minibatch averaging to efficiently avoid mode collapse, and increase the
learning efficiency with batch normalization and shortcut connections. To demonstrate
feasibility, we showed that medGAN generates synthetic patient records that achieve com-
parable performance to real data on many experiments including distribution statistics,
predictive modeling tasks and a medical expert review. We also empirically observe a
limited privacy risk in both identity and attribute disclosure using medGAN. »

o Let us note that the term "synthetic" samples means "fabricated" samples and not "summary"
samples: the generated data has the same number of variables as the input data. A synthetic dataset
is a repository of data that is generated programmatically.

II.1.3.a What does medGAN do?

The medGAN paper was published in 2018 while the first paper about GANs was published in 2014.
When the paper [5] was published, GANs had not been used for learning the distribution of discrete
variables. The paper reacts as follows:

« To address this limitation, we introduce medGAN, a neural network model that generates high-
dimensional, multi-label discrete variables that represent the events in EHRs (e.g., diagnosis of a
certain disease or treatment of a certain medication). Using EHR source data, medGAN is designed to

33

https://GitHub.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/cvae.ipynb
https://GitHub.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/cvae.ipynb
https://GitHub.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/generative_examples/cvae.ipynb
https://www.tensorflow.org/beta/tutorials/generative/cvae?
https://www.tensorflow.org/beta/tutorials/generative/cvae?

learn the distribution of discrete features, such as diagnosis or medication codes via a combination
of an autoencoder and the adversarial framework. In this setting, the autoencoder assists the
original GAN to learn the distribution of multi-label discrete variables. The specific contributions
of this work are as follows:

• We define an efficient algorithm to generate high-dimensional multi-label discrete samples
by combining an autoencoder with GAN, which we call medGAN. This algorithm is notable in
that it handles both binary and count variables.

• We propose a simple, yet effective, method called minibatch averaging to cope with the situa-
tion where GAN overfits to a few training samples (i.e., mode collapse), which outperforms
previous methods such as minibatch discrimination.

• We demonstrate a close-to-real data performance of medGAN using real EHR datasets on a set
of diverse tasks, which include reporting distribution statistics, classification performance
and medical expert review.

• We empirically show that medGAN leads to acceptable privacy risks in both presence disclosure
(i.e., discovery that a patient’s record contributed to the GAN) and attribute disclosure (i.e.,
discovery of a patient’s sensitive medical data). »

In this report, we will only detail the first point about medGAN: the combination of an autoencoder
with GANs. Autoencoders were presented in subsection II.1.2 of this report.

II.1.3.b Description of EHR Data and Notations

We assume there are |C| discrete variables (e.g., diagnosis, medication or procedure codes) in the
EHR data that can be expressed as a fixed-size vector xxx ∈Z|C|

+ , where the value of the i -th dimension
xi indicates the number of occurrences (i.e., counts) of the i -th variable in the patient record :

xxx =

x1

x2
...

xi
...

x|C|

(II.2)

In addition to the count variables, a visit can also be represented as a binary vector xxx ∈ {0,1}|C|,
where the i -th dimension indicates the absence or occurrence of the i -th variable in the patient
record.

It should be noted that we can also represent demographic information, such as age and gender, as
count and binary variables, respectively.

Learning the distribution of count variables is generally more difficult than learning the distribution
of binary variables.

II.1.3.c Combining GANs with an autoencoder

The architecture of medGAN is given in figure II.5. The discrete xxx comes from the source EHR data, zzz
is the random prior for the generator G (zzz is continuous). G is a feedforward network with shortcut

34

connections (right-hand side figure). An autoencoder (i.e, the encoder Enc and decoder Dec) is
learned from xxx. The same decoder Dec is used after the generator G to construct the discrete output.
The discriminator D tries to differentiate real input xxx and discrete synthetic output Dec(G(z)).

Figure II.5: Architecture of medGAN
Source: medGAN paper [5]

Since the generator G is trained by the error signal from the discriminator D via backpropagation,
the original GAN can only learn to approximate discrete patient records x ∈Z|C|

+ with continuous
values. We alleviate this limitation by leveraging the autoencoder. As seen in subsection II.1.2,
autoencoders are trained to project given samples to a lower dimensional space, then project them
back to the original space. Such a mechanism leads the autoencoder to learn salient features of the
samples.

In this work, we apply the autoencoder to learn the salient features of discrete variables that
can be applied to decode the continuous output of G . As depicted by Figure 1, an autoencoder
consists of an encoder Enc(xxx;θenc) that compresses the input x ∈Z|C|

+ to Enc(xxx) ∈Rh , and a decoder
Dec(Enc(xxx);θdec) that decompresses Enc(x) to Dec(Enc(xxx)) as the reconstruction of the original
input xxx.

With the pre-trained autoencoder, we can allow GAN to generate distributed representation of
patient records (i.e., the output of the encoder Enc), rather than generating patient records directly.
Then the pretrained decoder Dec can pick up the right signals from G(z) to convert it to the patient
record Dec(G(z)). The discriminator D is trained to determine whether the given input is a synthetic
sample Dec(G(z)) or a real sample xxx. The architecture of the proposed model medGAN is depicted in
Figure II.5.

It should be noted that we can round the values of Dec(G(z)) to their nearest integers to ensure
that the discriminator D is trained on discrete values instead of continuous values. The paper [5]
experimented both with and without rounding and empirically found that training D in the latter
scenario led to better predictive performance. Therefore, we assume, for the remainder of this
report, that D is trained without explicit rounding.

35

II.2 Algorithmic implementation

The code in this section is based on CHOI’s paper [5] and is accessible at https://github.com/
mp2893/medgan.

Rather than writing everything in this report, my work on the datasets and coding can be found
on my own GitHub repository about medGAN: https://github.com/sylvaincom/medgan-tips. I am
glad that I was able to make some contributions to Edward Choi’s code:

• Fixing an error due to version 1.16.3 of NumPy: https://github.com/mp2893/medgan/pull/15

• Fixing an error when running step 2-3 with count variables: https://github.com/mp2893/
medgan/pull/17

In this report, I add details but the core of the algorithmic implementation is on my GitHub
repository.

II.2.1 The medGAN program from Edward CHOI’s GitHub

II.2.1.a Edward CHOI’s GitHub

We use TensorFlow 1.2. Here is the description of the code on CHOI’s GitHub:

« This code trains a generative adversarial network to generate patient records.
This work currently can handle patient records that are aggregated over time,
hence represented as a matrix where a row corresponds to a patient, and a
column to a specific medical code (e.g. diagonsis code, medication code, or
procedure code). The value of the matrix could either be binary (i.e. a specific
medical code occurred in the longitudinal patient record or not) or count (i.e.
how many times a specific medical code occurred in the longitudinal patient
record). »

This GitHub is composed of two programs that have since been updated for Python 3:

• process_mimic.py (124 lines) inputs the public MIMIC-III dataset and outputs a suitable
training dataset for medGAN,

• medgan.py (410 lines) inputs the output of process_mimic.py and outputs the generated
(fake) multi-label discrete patient records.

It is important to gain access to the MIMIC-III database and then run it through process_mimic.py
so that we can understand how we should format the input data for medgan.py and thus run
medgan.py on our own data.

medgan.py is based on algorithm 1 from subsection I.2.3.

II.2.1.b The free and public MIMIC-III dataset

The MIMIC-III (Medical Information Mart for Intensive Care III) [24] [25] database is a free publicly
available hospital database containing de-identified data from approximately 40,000 patients.

36

https://github.com/mp2893/medgan
https://github.com/mp2893/medgan
https://github.com/sylvaincom/medgan-tips
https://github.com/mp2893/medgan/pull/15
https://github.com/mp2893/medgan/pull/17
https://github.com/mp2893/medgan/pull/17

This data comes from patients who were admitted to Beth Israel Deaconess Medical Center in
Boston, Massachusetts from 2001 to 2012. Upon request, this dataset can be downloaded from
https://mimic.physionet.org/gettingstarted/access/.

Accessing this dataset can take a few weeks and the process is detailed in a tutorial available at https:
//towardsdatascience.com/getting-access-to-mimic-iii-hospital-database-for-data-science-
projects-791813feb735. Here are the steps for getting access to the MIMIC-III dataset:

1. complete CITI “Data or Specimens Only Research” training course

2. create a PhysioNet account

3. request access to MIMIC III

4. accessing MIMIC III

In order to access the MIMIC-III dataset, we need to get a certificate – by completing a CITI course
– showing that we will be respectful while using this dataset (particularly concerning privacy and
consent).

II.2.2 Explanation of the code’s steps

For more information, please check my GitHub repository: https://github.com/sylvaincom/
medgan-tips.

In this subsection, I will explain the main steps of the two programs process_mimic.py and
medgan.py.

II.2.2.a Explanation of the steps of process_mimic.py

process_mimic.py is a Python 3 script that processes MIMIC-III dataset and builds a binary matrix
or a count matrix (depending on the input). The output matrix is a Numpy matrix of type float32
and suitable for training medGAN.

The file uses if __name__ == ’__main__’. For more information, please refer to:

• the Python documentation: https://docs.python.org/3/library/__main__.html,

• an interesting tutorial: https://www.afternerd.com/blog/python-__name__-__main__/

II.2.2.b Explanation of the steps of medgan.py

medgan.py defines a Medgan class. A tutorial on classes in Python can be found at https://docs.
python.org/3/tutorial/classes.html. Here is the first paragraph of the tutorial:

« Classes provide a means of bundling data and functionality together. Creating a new
class creates a new type of object, allowing new instances of that type to be made. Each
class instance can have attributes attached to it for maintaining its state. Class instances
can also have methods (defined by its class) for modifying its state. »

In short, by creating a class, we create a new type of objects with attributes. We can define new
functions (called methods) for objects of the created class.

37

https://mimic.physionet.org/gettingstarted/access/
https://towardsdatascience.com/getting-access-to-mimic-iii-hospital-database-for-data-science-projects-791813feb735
https://towardsdatascience.com/getting-access-to-mimic-iii-hospital-database-for-data-science-projects-791813feb735
https://towardsdatascience.com/getting-access-to-mimic-iii-hospital-database-for-data-science-projects-791813feb735
https://github.com/sylvaincom/medgan-tips
https://github.com/sylvaincom/medgan-tips
https://docs.python.org/3/library/__main__.html
https://www.afternerd.com/blog/python-__name__-__main__/
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

II.2.2.c Running the code

In order to run the code, we need to download the MIMIC-III dataset as well as process_mimic.py
and medgan.py. Out of the 28 files from MIMIC-III, we must put extract ADMISSIONS.csv and
DIAGNOSES_ICD.csv and put them in the same folder as the two Python codes.

38

II.3 Experimental results

For more information, please check my GitHub repository: https://github.com/sylvaincom/
medgan-tips.

II.3.1 For the MIMIC-III dataset of shape (46 520, 1 071) with binary values

II.3.1.a Accuracy of the (fictitious) generated data

We wish to measure the accuracy of the (fictitious) generated dataset called fict considering the
real-life original one called real. Is our (fictitious) generated dataset realistic?

Here are our parameters for medGAN:

dataset number of samples number of features
real 46 520 1 071
fict 10 000 1 071

n_epoch n_pretrain_epoch batch_size nSamples
1 000 100 1 000 10 000

Table II.1: Our parameters for medGAN

As in Choi’s paper [5], we use dimension-wise probability in figure II.6 as a measure of accuracy.
Indeed, the variables are binary. The values of the x-axis and the y-axis are ordered: we successively
compare the Bernoulli success probability for both datasets (real and fict) for a given feature.
Given that our data is binary, for each feature (dimension), we claim that 1 corresponds to success
and 0 to failure. Hence the proportion of 1s obtained is the Bernoulli success probability p. For
information, we have 1 071 features thus 1 071 scatter points.

Figure II.6: Is our fictitious generated dataset realistic?

The diagonal green line indicates the ideal performance where the real and the (fake) realistic
generated data show identical proportions of 1s. Based on figure II.6, as the dots are close to the

39

https://github.com/sylvaincom/medgan-tips
https://github.com/sylvaincom/medgan-tips

diagonal green line, we can say that medGAN has a really good performance. I recall that we have
a total of 1 071 points so it does not matter if we have a few points that are far from the diagonal
green line.

4 EXPERIMENTAL RESULT – The synthesis of binary values using medGAN works.

We have observed that medGAN can generate fictitious samples with binary values that are realistic.

- FURTHER WORK – We could quantify the accuracy of the generated dataset.

Rather than observing the accuracy of medGAN on a graph such as figure II.6, we could quantify
the accuracy by computing the total error: the sum (on all features) of the squares of the Bernoulli
success probability difference / error. Graphically, in figure II.6, an individual error (for a given
feature) is the distance from the dot to the diagonal green line. We can normalize this total error
by dividing it by the total number of features. This normalized squared error is actually the MSE
(mean squared error). We do not compute the MSE in this report because we have nothing to
compare its value to. We could also use correlations between features.

Now that we have generated fictitious samples that are realistic, we can try to perform dataset
augmentation.

II.3.1.b Boosting the prediction score with dataset augmentation

One application of medGAN is to use the fictitious generated dataset to help enrich the original
real-life dataset (for dataset augmentation) to try to boost the prediction score. Here, we act as if we
were in a real-life case and all that we have at our disposal is a real-life dataset (called real) of shape
(46 520, 1 071). We want to use medGAN to generate a new fictitious realistic dataset called fict of
10 000 fictitious realistic samples (with 1 071 features as well). By adding (meaning concatenating)
fict to real, we get a new augmented dataset (called aug) that has 56 520 samples (patients) (and
also 1 071 features). We hope that building our model on aug helps our prediction algorithms make
better predictions than building our model on real. A recap is given at table II.2.

real dataset fict dataset aug dataset
number of samples 46 520 10 000 56 520
number of features 1 071 1 071 1 071

Table II.2: Our parameters for dataset augmentation

How do we compute the prediction score of a dataset? Out of the 1 071 features of our dataset, we
select one that we call target. We are going to try to predict the target feature using the remaining
1 070 features. The scores are computed with cross-validation (thus we do not divide our dataset
into train / valid / test). We choose our hyper-parameters with randomized search (using a random
seed for reproducibility).

How do we choose target? We want to predict the feature with the highest variance. Indeed, a
feature with a low variance, for example, with only 1s, is very easy to predict for new unseen samples
because we put 1s. Thus, we want target to have a proportion of 1s that is the closest to 50%.

40

8 MISTAKE TO AVOID – We should not perform dataset augmentation on a real dataset that
already has a lot of samples.

We note that the real dataset contains 46 520 samples. If we already have 46 520 samples (which
is a lot), we probably do not need to perform dataset augmentation because we have no shortage
of samples. In the next subsection II.3.2, we are going to assume that we only have 1 000 samples
at our disposal. Thus, in order to keep this report concise, we are not going to present the results
of dataset augmentation on the MIMIC-III dataset of shape (46 520, 1 071) with binary values. By
doing so, we can also save some computing time on the prediction scores benchmark (because
we have less samples).

II.3.2 For the MIMIC-III dataset of shape (1 000, 100) with binary values

In the previous subsection II.3.1, we wanted to perform dataset augmentation on the MIMIC-III
dataset of shape (46 520, 1 071) with binary values. However, in practise, if we already have 46 520
samples, we probably do not need to perform dataset augmentation because we have no shortage
of samples. Hence, in this subsection, we are going to randomly select 1 000 samples and randomly
select 100 features from the MIMIC-III dataset. We use a random seed for reproducibility. This
is our real dataset. Thus, we are in a situation where we have a shortage of samples so we try to
perform dataset augmentation.

8 MISTAKE TO AVOID – Do not forget to select the samples and the features of our real dataset
randomly.

A mistake that I made was to select the first 1 000 samples and the first 100 features of the MIMIC-
III dataset to obtain the real dataset. With this dataset, my final result was that the prediction
score decreases with dataset augmentation. Actually, we should remain as general as possible by
doing a random sampling for the real dataset.

- FURTHER WORK – We should work on more than one real dataset.

Actually, instead of doing only one prediction score benchmark of a real dataset (whose samples
and features have been randomly selected), we should do several random samplings to obtain
several different real datasets. Then, we take the mean of the prediction scores on these different
real datasets for the benchmark.

II.3.2.a Accuracy of the (fictitious) generated data

Here are our parameters:

dataset number of samples number of features
real 1 000 100
fict 1 000 100

n_epoch n_pretrain_epoch batch_size nSamples
1 000 100 100 1 000

Table II.3: Our parameters for medGAN

41

As in Choi’s paper [5], we use dimension-wise probability in figure II.7. Indeed, the variables are
binary.

Figure II.7: Dimension-wise probability performance of medGAN

Based on figure II.7, as the dots are close to the diagonal green line, we can say that medGAN has a
really good performance. I recall that that we have a total of 100 points so it does not matter if we
have a few points that are far from the diagonal green line.

When comparing figure II.6 to II.7, we can observe that the generated dataset is more realistic in
II.6 than II.6, thus when we have more samples, which is intuitive.

- FURTHER WORK – How to choose the parameters of medGAN to make our generated dataset
more realistic?

It could be interesting to do a benchmark of several parameters of medGAN (n_epoch, nSamples...)
and observe how their corresponding MSE evolves. For example, we could plot the MSE against
n_epoch. We could also explore some other parameters: number of samples, number of features,
number of samples by number of features, correlation between features...

II.3.2.b Boosting the prediction score (5-fold cross-validation) with dataset augmentation

Here, the prediction scores are computed with a 5-fold cross-validation (thus we do not divide our
dataset into train / valid / test). We choose our hyper-parameters with randomized search (using a
random seed for reproducibility).

The index of the target feature is 5. The approximate proportion of 1s of target is 0.264 and it
is the highest among all features. We could have chosen target as the feature the has the highest
standard deviation.

- FURTHER WORK – We should try several values of target.

The goal is to remain as general as possible.

42

First, we do a benchmark of the prediction scores of several machine learning (ML) models with a
5-fold cross-validation on the original real-life dataset (that we called real). The results are given
table II.4.

ML model Approx. mean of scores Approx. variance of scores Processing time
Logistic Regression 0.738 - 0:00:00.250000
Nearest Neighbors 0.749 - 0:00:00.046875

Naive Bayes 0.406 0.018 0:00:00.015625
Perceptron 0.711 0.051 0:00:00.062500

SVM 0.699 - 0:00:00.375000
Random Forest 0.753 - 0:00:01.250000

Multi-Layer Perceptron 0.742 - 0:00:00.796875

Table II.4: Benchmark of ML models on real of shape (1 000, 100)

o The score for the Multi-Layer Perceptron can vary from a simulation to another due to the
randomized search even though we use a random seed. Indeed, the randomness from computers is
not truly random.

Second, we do a benchmark of the fictitious realistic generated dataset (that we called fict). The
results are given table II.5.

ML model Approx. mean of scores Approx. variance of scores Processing time
Logistic Regression 0.875 - 0:00:00.421875
Nearest Neighbors 0.865 - 0:00:00.078125

Naive Bayes 0.402 0.059 0:00:00
Perceptron 0.841 0.027 0:00:00.015625

SVM 0.863 - 0:00:00.531250
Random Forest 0.867 - 0:00:01.234375

Multi-Layer Perceptron 0.866 - 0:00:01.218750

Table II.5: Benchmark of ML models on fict of shape (1 000, 100)

Third, we do a benchmark of the prediction scores on the augmented dataset (that we called aug).
The results are given table II.6. Note that II.6 is kind of a mean of II.4 and II.5 because aug is
balanced between 50% of values from real and 50% of values from fict.

ML model Approx. mean of scores Approx. variance of scores Processing time
Logistic Regression 0.792 - 0:00:00.625000
Nearest Neighbors 0.792 - 0:00:00.125000

Naive Bayes 0.391 0.038 0:00:00.015625
Perceptron 0.765 0.095 0:00:00.078125

SVM 0.784 - 0:00:00.890625
Random Forest 0.793 - 0:00:01.718750

Multi-Layer Perceptron 0.788 - 0:00:08.046875

Table II.6: Benchmark of ML models on aug of shape (2 000, 100)

Finally, we compute the increase of the prediction score from real to aug, thus due to dataset
augmentation. The results are given table II.7. We increase the prediction score of almost all the
models.

43

ML model Prediction score increase (%)
Logistic Regression 7.32
Nearest Neighbors 5.74
Naive Bayes -3.69
Perceptron 7.59
SVM 12.16
Random Forest 5.31
Multi-Layer Perceptron 6.2

Table II.7: Benchmark of scores’ increase from real to aug on ML models

We can observe graphically the increase in the prediction score figure II.8. The values of the x-axis
and the y-axis are ordered. The diagonal green line indicates where the real and the augmented
data show identical performance for a given machine learning model. Based on figure II.8, we can
say that medGAN can perform dataset augmentation and boost the prediction score. Indeed, the
dots are mostly on top of the green line.

Figure II.8: Boosting the prediction score with dataset augmentation

8 MISTAKE TO AVOID – We should not try to measure the score increase of dataset augmentation
with a cross-validation because target would contain fictitious generated values.

In table II.7 and figure II.8, we showed that dataset augmentation can boost the prediction score.
However, we kind of cheated because half of the values of target in aug are fictitious generated
values from fict. Thus, we try to use fictitious features to predict a target feature that is also
fictitious. Hence, the score increase is natural and not due to dataset augmentation itself.

We now try to avoid this problem by dividing our datasets into train/test and choosing our
hyper-parameters with a randomzied search (using a random seed for reproducibility). We take
take real (or aug) for the training set and we take only real-life values for the test set. The real-life
values for the test set will come from values from the full MIMIC-III dataset. We recall that we
only took 1 000 samples out of the 46 520 for real.

44

8 MISTAKE TO AVOID – We must not replace the values of target in fict with some other ones.

By trying to avoid the previous issue, I tried to replace the target values of fict with real-life
target values. I took real-life target values of samples from MIMIC-III that are not already in
real (called target_real). Note that target_real is a vector. The result I got is that dataset
augmentation decreases the score.

However, this is a mistake because in the fict dataset (split into X_fict and y_fict), we
no longer correspond X_fict to y_fict but to target_real. The values in target_real are
ordered but the values in X_fict are not ordered in the same way as the vector target_real. In
other words, y_fict and target_real do not have the same order.

II.3.2.c Boosting the prediction score (on a proper test set) with dataset augmentation

Contrary to subsubsection II.3.2.b, we no longer use cross-validation to compute the prediction
score of our machine learning models.

We now split our real dataset of shape (1 000, 100) into X_train and y_train (that is actually
target). We try to use X_train and y_train to build a model that can predict y for an unseen X .

For the test set, we randomly select 250 samples (and the same 100 features as real) from the
complete MIMIC-III dataset of shape (46 520, 1 071) that are not already samples in real. We split
our test dataset of shape (250, 100) into X_test and y_test (that is actually target).

Let model be a machine learning model of our benchmark such as the perceptron. We fit the
model with model.fit(X_train, y_train) then compute the score with model.score(X_test,
y_test).

- FURTHER WORK – For a given real dataset, we should take the mean of scores on several
randomly chosen test sets in the complete MIMIC-III dataset.

The goal is to be as general as possible. Indeed, we no longer use the cross-validation function
from sklearn so we must use different training sets to get a score that is more representative of
our data.

We do a benchmark of the prediction scores of several ML models on the training set real and the
test set. The results are given table II.8.

ML model Approx. mean of scores Processing time
Logistic Regression 0.708 0:00:00.109375
Nearest Neighbors 0.684 0:00:00.062500

Naive Bayes 0.432 0:00:00
Perceptron 0.688 0:00:00.062500

SVM 0.704 0:00:00.156250
Random Forest 0.664 0:00:01.187500

Multi-Layer Perceptron 0.684 0:00:00

Table II.8: Benchmark of ML models on the training set real of shape (1 000, 100)

We do a benchmark of the prediction scores of several ML models on the training set aug and the
test set. The results are given table II.9.

45

ML model Approx. mean of scores Processing time
Logistic Regression 0.716 0:00:00.250000
Nearest Neighbors 0.704 0:00:00.093750

Naive Bayes 0.444 0:00:00
Perceptron 0.724 0:00:00

SVM 0.716 0:00:00.484375
Random Forest 0.68 0:00:01.656250

Multi-Layer Perceptron 0.712 0:00:13.453125

Table II.9: Benchmark of ML models on the training set aug of shape (2 000, 100)

We can now compute the increase of the prediction score from real to aug. The results are given
table II.10. With dataset augmentation, we increased the prediction score of all the models, which
is remarkable. For the perceptron, we even get an increase of more than 5%.

ML model Prediction score increase (%)
Logistic Regression 1.13
Nearest Neighbors 2.92
Naive Bayes 2.78
Perceptron 5.23
SVM 1.70
Random Forest 2.41
Multi-Layer Perceptron 4.09

Table II.10: Benchmark of scores’ increase from real to aug on ML models

We can observe graphically the increase in the prediction score figure II.9. Based on figure II.9, we
can say that medGAN can perform dataset augmentation and boost the prediction score.

Figure II.9: Boosting the prediction score with dataset augmentation

4 EXPERIMENTAL RESULT – Using medGAN to boost the prediction score works on binary values.

We have observed that medGAN can generate fictitious samples with binary values that are realistic.
By concatenating the fictitious dataset to the real-life dataset into an augmented training dataset,
we can improve the prediction score by up to 5%.

46

Using the exact same parameters as in table II.10, I once obtained an increase in the score of 9.82%
for the Multi-Layer Perceptron (MLP). Indeed, as explained earlier, the score of the MLP can vary
from a simulation due to the randomized search.

- FURTHER WORK – We should run several simulations (because of the randomized search) and
take the mean of scores.

The goal is to remain as general as possible. We could also use a grid search for the MLP model
but the computing time would be much longer.

- FURTHER WORK – How to choose the parameters of medGAN to increase the prediction score?

It could be interesting to do a benchmark of several parameters of the ML benchmark (the size of
the test size, the accuracy of our generated dataset (MSE)...) and observe how their prediction
scores evolve. For example, we could plot the prediction score increase (mean of all of the ML
models) against the MSE. Instead of going through the MSE, we could also plot the score increase
against the number of samples of real for example.

II.3.3 For the MIMIC-III dataset of shape (46 520, 1 071) with count values

Accuracy of the (fictitious) generated data

We wish to measure the accuracy of the fictitious generated dataset called fict considering the
real-life original one called real. Is our fictitious generated dataset realistic?

Here are our parameters:

dataset number of samples number of features
real 46 520 1 071
fict 10 000 1 071

n_epoch n_pretrain_epoch batch_size nSamples
1 000 100 1 000 10 000

Table II.11: Our parameters for medGAN

Contrary to binary values, we can no longer use dimension-wise probability as a measure of
performance.

We use statistical indicators: mean, standard deviation and quantile. These indicators are very basic
but they still enable us to get a quick sense that our generated data is quite close to the real-life data.
In Choi’s paper [5] or in the paper about dataset augmentation [6], the efficiency measure is more
advanced but more complicated to implement.

47

We plot the mean at figure II.10. We can observe that our datasets have almost the same mean for
each feature, thus that our generated data is quite accurate.

Figure II.10: Comparing the mean of the features of both datasets

We plot the standard deviation at figure II.11. We can observe that our datasets have almost the
same standard deviation for each feature, thus that our generated data is quite accurate.

Figure II.11: Comparing the standard deviation of the features of both datasets

We plot the median (0.5 quantile) at figure II.12. We can observe that our datasets have almost the
same median for each feature, thus that our generated data is quite accurate. Up to the 0.6 quantile
(thus including the median), we can only observe one dot (they are superposed) at (0,0) because
the quantile for each column is zero for both datasets. Hence, even if we have count variables, we
get a lot of zeros.

48

Figure II.12: Comparing the median of the features of both datasets

II.3.4 For the MIMIC-III dataset of shape (1 000, 100) with count values

II.3.4.a Accuracy of the (fictitious) generated data

Here are our parameters:

dataset number of samples number of features
real 1 000 100
fict 1 000 100

n_epoch n_pretrain_epoch batch_size nSamples
1 000 100 1 000 1 000

Table II.12: Our parameters for medGAN

We plot the mean at figure II.13. We can observe that our datasets have almost the same mean for
each feature, thus that our generated data is quite accurate.

Figure II.13: Comparing the mean of the features of both datasets

We plot the standard deviation at figure II.14. We can observe that our datasets have almost the
same standard deviation for each feature, thus that our generated data is not really accurate. It may
be because synthesizing count values is harder than synthesizing binary ones.

49

Figure II.14: Comparing the standard deviation of the features of both datasets

II.3.4.b Boosting the prediction score (on a proper test set) with dataset augmentation

We apply the same method as for subsubsection II.3.2.c.

We do a benchmark of the prediction scores of several ML models on the training set real and the
test set. The results are given table II.13.

Approx. score Processing time
Random Forest 0.78 0:00:01.109375

Logistic Regression 0.77 0:00:00
Nearest Neighbors 0.77 0:00:00

Perceptron 0.77 0:00:00.062500
SVM 0.75 0:00:00.296875

Multi-Layer Perceptron 0.72 0:00:00
Naive Bayes 0.25 0:00:00.062500

Table II.13: Benchmark of ML models on the training set real of shape (1 000, 100)

We do a benchmark of the prediction scores of several ML models on the training set aug and the
test set. The results are given table II.14.

Approx. score Processing time
Random Forest 0.79 0:00:01.125000

Logistic Regression 0.77 0:00:00.015625
Nearest Neighbors 0.77 0:00:00.046875

Multi-Layer Perceptron 0.76 0:00:05.875000
Perceptron 0.70 0:00:00.015625

SVM 0.68 0:00:01
Naive Bayes 0.25 0:00:00

Table II.14: Benchmark of ML models on the training set aug of shape (2 000, 100)

We can now compute the increase of the prediction score from real to aug. The results are given
table II.15. With dataset augmentation, we do not increase the score, in most cases we decrease it.
It seems that it is harder with count values than binary values. Actually, it would be very intuitive

50

if the score increased with the accuracy of fict. Here, it is hard to generate count values that are
realistic.

Prediction score increase (%)
Logistic Regression 0.00
Nearest Neighbors 0.00

Naive Bayes 0.00
Perceptron -9.09

SVM -9.33
Random Forest 1.28

Multi-Layer Perceptron 5.56

Table II.15: Benchmark of scores’ increase from real to aug on ML models

- FURTHER WORK – In order to make medGAN work better on count values, we should customize
our neural networks to each dataset.

For example, instead of taking CNNs, we could maybe look into other types of neural networks.
The article Automatically finding the best Neural Network for your GAN can be interesting to
read. Here is the link: https://towardsdatascience.com/automatically-finding-the-
best-neural-network-for-your-gan-c0b97a5949f2

51

https://towardsdatascience.com/automatically-finding-the-best-neural-network-for-your-gan-c0b97a5949f2
https://towardsdatascience.com/automatically-finding-the-best-neural-network-for-your-gan-c0b97a5949f2

52

Conclusion

In this report, I have explained how GANs (generative adversarial networks) work. In short, GANs
are a generative model with implicit density estimation, thus the term "generative". All generative
models are unsupervised learning methods. The key idea behind GANs is to have two neural
networks competing against each other: the generator (the artist) and the discriminator (the art
critic), thus the term "adversarial". GANs use two neural networks, thus the term "networks".

GANs were discovered in 2014 by Ian GOODFELLOW [1]. Since 2014, they have mainly been applied
to computer vision. Research into applying GANs to patient data is quite recent and young. An
important advance occurred in 2018 with Edward CHOI’s medGAN (for medical GAN) [5]. medGAN is a
generative adversarial network for generating electronic health records (EHR). Basically, medGAN is
a combination of GANs and autoencoders. The purpose of autoencoders is to make sure that our
generated data is discrete (and not continuous because of the random noise).

There are two main applications of medGAN that can benefit Servier: privacy and dataset augmenta-
tion. We only looked into dataset augmentation. For information, some papers such as [6] have
shown that GANs can boost the prediction score for EHR.

Experimentally, we have shown that medGAN can synthesize binary values as well as count values.
It seems that it is harder to synthesize count values than binary ones. medGAN works badly when
mixing count values with binary ones. Moreover, medGAN does not take into account continuous
values, at least for now. However, binary values are actually very useful. Indeed, we can transform
categorical features into binary ones using one-hot encoding. By doing so, we increase the number
of features. Furthermore, we can transform continuous or discrete values into binary ones by using
intervals. For example, if we have the age feature that is discrete (age 34, age 21...), we can transform
it into several binary features: for example does the patient belong to interval of age 10-20? If yes,
value 1, otherwise value 0.

Experimentally, we have also shown that medGAN can boost the prediction score on the MIMIC-
III dataset with binary values. However, dataset augmentation does not seem to work very well
on another dataset than MIMIC-III with binary values. It seems that we should customize our
parameters but also our neural networks for each dataset, as medgan.py was customized for the
MIMIC-III dataset (or so it seems).

Once again, the most updated versions of my programs can be found on my GitHub: https:
//github.com/sylvaincom.

Previously, in this report, I have made a lot of suggestions for further works, especially when
presenting the experimental results at section II.3. I will not replicate them again in this conclusion.

53

https://github.com/sylvaincom
https://github.com/sylvaincom

54

Bibliography

[1] Ian J. GOODFELLOW, Jean POUGET-ABADIE, Mehdi MIRZA, Bing XU, David WARDE-
FARLEY, Sherjil OZAIRY, Aaron COURVILLE, Yoshua BENGIO. Generative Adversarial Nets.
arXiv:1406.2661v18, 2014.

[2] Fei-Fei LI, Justin JOHNSON, Serena YEUNG. CS231n: Convolutional Neural Networks for Visual
Recognition. Lecture 13 | Generative Models. Spring 2017. http://cs231n.stanford.edu/

[3] Ian GOODFELLOW, Yoshua BENGIO and Aaron COURVILLE. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org

[4] Ian GOODFELLOW. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160v4,
2017.

[5] Edward CHOI, Siddharth BISWAL, Bradley MALIN, Jon DUKE, Walter F. STEWART, Jimeng
SUN. Generating Multi-label Discrete Patient Records using Generative Adversarial Networks.
arXiv:1703.06490v3, 2018.

[6] Zhengping CHE, Yu CHENG, Shuangfei ZHAI, Zhaonan SUNK, Yan LIU. Boosting Deep Learn-
ing Risk Prediction with Generative Adversarial Networks for Electronic Health Records.
arXiv:1709.01648v1, 2017.

[7] Sanjay PURUSHOTHAM, Chuizheng MENG, Zhengping CHE, Yan LIU. Benchmarking deep
learning models on large healthcare datasets. Journal of Biomedical Informatics, Vol-
ume 83, July 2018, Pages 112-134. https://www.sciencedirect.com/science/article/pii/
S1532046418300716

[8] Khaled EL EMAM, Elizabeth JONKER, Luk ARBUCKLE, Bradley MALIN. A Systematic Review of
Re-Identification Attacks on Health Data PLoS ONE, 6(12):e28071, 2011b. https://journals.
plos.org/plosone/article?id=10.1371/journal.pone.0028071

[9] Minsuk KAHNG, Nikhil THORAT, Duen Horng (Polo) CHAU, Fernanda B. VIÉGAS, and Martin
WATTENBERG. GAN Lab: Understanding Complex Deep Generative Models using Interactive
Visual Experimentation. arXiv:1809.01587v1, 2018.

[10] Tero KARRAS, Timo AILA, Samuli LAINE, Jaakko LEHTINEN. Progressive Growing of GANs for
Improved Quality, Stability, and Variation. NVIDIA, arXiv:1710.10196v3, 2018.

[11] Jun-Yan ZHU, Taesung PARK, Phillip ISOLA, Alexei A. EFROS Unpaired Image-to-Image Transla-
tion using Cycle-Consistent Adversarial Networks. Berkeley AI Research (BAIR) laboratory, UC
Berkeley. arXiv:1703.10593v6, 2018.

55

http://cs231n.stanford.edu/
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S1532046418300716
https://www.sciencedirect.com/science/article/pii/S1532046418300716
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028071
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028071

[12] Phillip ISOLA, Jun-Yan ZHU, Tinghui ZHOU, Alexei A. EFROS. Image-to-Image Translation
with Conditional Adversarial Networks. Berkeley AI Research (BAIR) Laboratory, UC Berkeley
arXiv:1703.10593v6, 2018

[13] Jean-Paul DELAHAYE. L’intelligence artificielle et le test de Turing. LNA #66. https://culture.
univ-lille1.fr/fileadmin/lna/lna66/lna66p04.pdf

[14] Martin GILES. The GANfather: The man who’s given machines the gift of imagination. MIT Tech-
nology Review, 2018. https://www.technologyreview.com/s/610253/the-ganfather-the-
man-whos-given-machines-the-gift-of-imagination/

[15] Karen HAO. Inside the world of AI that forges beautiful art and terrifying deepfakes. MIT
Technology Review, 2018. https://www.technologyreview.com/s/612501/inside-the-world-
of-ai-that-forges-beautiful-art-and-terrifying-deepfakes/

[16] Charlotte JEE. An AI system identified a potential new drug in just 46 days. MIT Technology
Review, 2019. https://www.technologyreview.com/f/614251/an-ai-system-identified-a-
potential-new-drug-in-just-46-days/

[17] Arnaud DEVILLAR. Les algorithmes collaborent pour créer de faux réalistes. Sciences et Avenir -
Décembre 2018 - N°862.

[18] Remy DEMICHELIS. L’intelligence artificielle peut-elle être créative ? Les Echos,
2018. https://www.lesechos.fr/tech-medias/intelligence-artificielle/lintelligence-
artificielle-peut-elle-etre-creative-140594

[19] Remy DEMICHELIS. Les GAN repoussent les limites de l’intelligence artificielle. Les
Echos, 2018. https://www.lesechos.fr/tech-medias/intelligence-artificielle/les-gan-
repoussent-les-limites-de-lintelligence-artificielle-206875

[20] Leila MARCHAND. Intelligence artificielle : un grand nom de Google rejoint d’Apple. Les Echos,
2019. https://www.lesechos.fr/tech-medias/intelligence-artificielle/intelligence-
artificielle-un-grand-nom-de-google-rejoint-dapple-1007080

[21] Elisa Braun. La viralité d’une fausse vidéo d‘Obama met en lumière le phénomène du «deep
fake». Le Figaro, 2018. http://www.lefigaro.fr/secteur/high-tech/2018/04/20/32001-
20180420ARTFIG00134-la-viralite-d-une-fausse-video-d8216obama-met-en-lumiere-le-
phenomene-du-deep-fake.php

[22] Martin Ford. How we’ll earn money in a future without jobs. TED, 2017. https://www.youtube.
com/watch?v=swB7Ivct8d8

[23] Alexander AMINI, Ava SOLEIMANY 6.S191: Introduction to Deep Learning. MIT, 2018. http:
//introtodeeplearning.com/

[24] MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman
L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016).
DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635

[25] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody
GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220 [Cir-
culation Electronic Pages; http://circ.ahajournals.org/content/101/23/e215.full]; 2000
(June 13).

56

https://culture.univ-lille1.fr/fileadmin/lna/lna66/lna66p04.pdf
https://culture.univ-lille1.fr/fileadmin/lna/lna66/lna66p04.pdf
https://www.technologyreview.com/s/610253/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/
https://www.technologyreview.com/s/610253/the-ganfather-the-man-whos-given-machines-the-gift-of-imagination/
https://www.technologyreview.com/s/612501/inside-the-world-of-ai-that-forges-beautiful-art-and-terrifying-deepfakes/
https://www.technologyreview.com/s/612501/inside-the-world-of-ai-that-forges-beautiful-art-and-terrifying-deepfakes/
https://www.technologyreview.com/f/614251/an-ai-system-identified-a-potential-new-drug-in-just-46-days/
https://www.technologyreview.com/f/614251/an-ai-system-identified-a-potential-new-drug-in-just-46-days/
https://www.lesechos.fr/tech-medias/intelligence-artificielle/lintelligence-artificielle-peut-elle-etre-creative-140594
https://www.lesechos.fr/tech-medias/intelligence-artificielle/lintelligence-artificielle-peut-elle-etre-creative-140594
https://www.lesechos.fr/tech-medias/intelligence-artificielle/les-gan-repoussent-les-limites-de-lintelligence-artificielle-206875
https://www.lesechos.fr/tech-medias/intelligence-artificielle/les-gan-repoussent-les-limites-de-lintelligence-artificielle-206875
https://www.lesechos.fr/tech-medias/intelligence-artificielle/intelligence-artificielle-un-grand-nom-de-google-rejoint-dapple-1007080
https://www.lesechos.fr/tech-medias/intelligence-artificielle/intelligence-artificielle-un-grand-nom-de-google-rejoint-dapple-1007080
http://www.lefigaro.fr/secteur/high-tech/2018/04/20/32001-20180420ARTFIG00134-la-viralite-d-une-fausse-video-d8216obama-met-en-lumiere-le-phenomene-du-deep-fake.php
http://www.lefigaro.fr/secteur/high-tech/2018/04/20/32001-20180420ARTFIG00134-la-viralite-d-une-fausse-video-d8216obama-met-en-lumiere-le-phenomene-du-deep-fake.php
http://www.lefigaro.fr/secteur/high-tech/2018/04/20/32001-20180420ARTFIG00134-la-viralite-d-une-fausse-video-d8216obama-met-en-lumiere-le-phenomene-du-deep-fake.php
https://www.youtube.com/watch?v=swB7Ivct8d8
https://www.youtube.com/watch?v=swB7Ivct8d8
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://www.nature.com/articles/sdata201635
http://circ.ahajournals.org/content/101/23/e215.full

Notation

We provide a concise (non exhaustive) reference describing the notation used throughout this book.

a a scalar (integer or real)

aaa a vector

AAA a matrix

a a scalar random variable

aaa a vector-valued random variable

AAA a matrix-valued random variable

f (xxx;θθθ) function of xxx parametrized by θθθ

Ex∼P
[

f (x)
]

the expectation of f (x) with respect to P (x)

pdata the data generating distribution

p̂data the empirical distribution defined by the training set

X a set of training examples

xxx(i) the i -th example (input) from a data set

y (i) or yyy (i) the data set associated with xxx(i) for supervised learning

XXX the m ×n matrix with input example xxx(i) in row XXX i ,:

57

58

List of Figures

1 Portrait generated in 2018 by Paris-based arts-collective Obvious with GANs sold with
an auction price of 432 000$. 9

2 The semantic gap between the concept of cat (that a human sees) and the pixel values
(that the computer sees) . 9

I.1 An example of explicit density estimation . 14

I.2 An example of implicit density estimation . 14

I.3 A taxonomy of generative models . 14

I.4 Realistic fictional portraits of celebrities generated from originals using GANs 15

I.5 CycleGAN: real images transposed into realistic fictional images using GANs 16

I.6 Several types of image transformations using GANs . 16

I.7 Role of the random noise . 21

I.8 Roles of the generator and the discriminator . 21

I.9 Interpretation: roles of the generator and the discriminator 22

I.10 Generator and discriminator training . 22

I.11 Gradient descent on the generator . 24

I.12 Gradient ascent on the generator . 25

II.1 Representation of the encoder . 31

II.2 Representation of the encoder and the decoder . 31

II.3 An example of reconstruction . 32

II.4 The encoder can be used to initialize a supervised model. 32

II.5 Architecture of medGAN . 35

II.6 Is our fictitious generated dataset realistic? . 39

II.7 Dimension-wise probability performance of medGAN 42

II.8 Boosting the prediction score with dataset augmentation 44

II.9 Boosting the prediction score with dataset augmentation 46

59

II.10 Comparing the mean of the features of both datasets 48

II.11 Comparing the standard deviation of the features of both datasets 48

II.12 Comparing the median of the features of both datasets 49

II.13 Comparing the mean of the features of both datasets 49

II.14 Comparing the standard deviation of the features of both datasets 50

60

List of Tables

II.1 Our parameters for medGAN . 39

II.2 Our parameters for dataset augmentation . 40

II.3 Our parameters for medGAN . 41

II.4 Benchmark of ML models on real of shape (1 000, 100) 43

II.5 Benchmark of ML models on fict of shape (1 000, 100) 43

II.6 Benchmark of ML models on aug of shape (2 000, 100) 43

II.7 Benchmark of scores’ increase from real to aug on ML models 44

II.8 Benchmark of ML models on the training set real of shape (1 000, 100) 45

II.9 Benchmark of ML models on the training set aug of shape (2 000, 100) 46

II.10 Benchmark of scores’ increase from real to aug on ML models 46

II.11 Our parameters for medGAN . 47

II.12 Our parameters for medGAN . 49

II.13 Benchmark of ML models on the training set real of shape (1 000, 100) 50

II.14 Benchmark of ML models on the training set aug of shape (2 000, 100) 50

II.15 Benchmark of scores’ increase from real to aug on ML models 51

61

62

	Acknowledgments
	Introduction
	General presentation on generative adversarial networks (GANs)
	Some preliminary notions
	Supervised vs. unsupervised learning
	What is a generative model?
	Why are generative models interesting?
	A few important concepts and facts of machine learning

	How do GANs work?
	The principle: generator vs discriminator
	The two-player minimax game
	Gradient descent
	Application: some simulations with TensorFlow and GAN Lab

	Comparison of GANs with other generative models

	Application of GANs to electronic health records (EHR)
	Theoretical approach: medGAN
	How can Servier benefit from GANs?
	What are autoencoders?
	How does medGAN work?

	Algorithmic implementation
	The medGAN program from Edward Choi's GitHub
	Explanation of the code's steps

	Experimental results
	For the MIMIC-III dataset of shape (46 520, 1 071) with binary values
	For the MIMIC-III dataset of shape (1 000, 100) with binary values
	For the MIMIC-III dataset of shape (46 520, 1 071) with count values
	For the MIMIC-III dataset of shape (1 000, 100) with count values

	Conclusion
	Bibliography
	Notation
	List of Figures
	List of Tables

