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Introduction
Why compare data sets’ distributions

Why? Important problem in
modelling.
Example: maintenance /
anomaly detection
Õ detect when a distribution
is "shifted" from its "normal"
state
2 main categories:

integral probability metrics
(IPMs)
f -divergences

Application: Choquet integral
with stochastic inputs
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Integral probability metric γ

IPMs: empirical estimation of distances on probabilities on S ⊂ R.

Definition (Integral probability metric γ)

Given two probability measures P and Q defined on a measurable set
S ⊂ R, the integral probability metric (IPM) giving the distance
between P and Q is defined as

γF (P,Q) = sup
f∈F

∣∣∣∣ˆ
S

f dP−
ˆ

S
f dQ

∣∣∣∣ (1)

where F is a class of real-valued bounded measurable functions on S.

Each choice of F leads to a specific IPM.
Focus on one IPM: Kantorovich metric W .
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Kantorovich metric W

Definition (Kantorovich metric W )
Setting:

F = {f : ‖f‖L 6 1} (2)

in (1) yields the Kantorovich metric W , where ‖f‖L is the Lipschitz
semi-norm of a bounded continuous real-valued function f :

‖f‖L = sup

{
|f (x)− f (y)|
|x − y |

: x 6= y in S ⊂ R
}

(3)

Notation: FW = {f : ‖f‖L 6 1}.
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Example: explicit computation of W

Let S = [a, s] and h = 1 (interval length).

Suppose P = U([a,a + h]) and Q = U([r , r + h]) , where:

−∞ < a 6 r 6 a + h 6 r + h <∞ (4)

Then, we can show that:

W (P,Q) = r − a (5)

W depends on the parameters a and r of the uniform
distributions:

r − a↗ =⇒W (P,Q)↗
W (P,Q) = 0⇐⇒ r = a⇐⇒ P = Q
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Definition (Empirical estimator of the Kantorovich metric)

Given
{

X (1)
1 ,X (1)

2 , . . . ,X (1)
m

}
and

{
X (2)

1 ,X (2)
2 , . . . ,X (2)

n

}
, which are i.i.d.

samples drawn randomly from P and Q, respectively, the empirical
estimator of W (P,Q)W (P,Q)W (P,Q) is:

W (Pm,Qn) = sup
f∈F

∣∣∣∣∣∣ 1
m

m∑
i=1

f
(

X (1)
i

)
− 1

n

n∑
j=1

f
(

X (2)
i

)∣∣∣∣∣∣ (6)

where Pm = 1
m
∑m

i=1 δX (1)
i

and Qn = 1
n
∑n

i=1 δX (2)
i

represent the

empirical distributions of P and Q, respectively, and N = n + m.

Goal: find the function f that solves (6) for F = FW .
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Theorem (Empirical estimator of the Kantorovich metric)
We have:

W (Pm,Qn) =
N∑

i=1

Ỹia?i (7)

Ỹi =
1
m when Xi = X (1)

i for i = 1, . . . ,m (8)

Ỹm+i = −1
n when Xm+i = X (2)

i for i = 1, . . . ,n

and
{

a?i
}N

i=1 solve the following linear program:

max
a1,...,aN

{
N∑

i=1

Ỹiai : −|Xi − Xj | 6 ai − aj 6 |Xi − Xj |,∀i , j

}
(9)

å In practice: PuLP library from Python.
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Solving the linear programming problem for N = 4

The objective function is:
∑N

i=1 Ỹiai = Ỹ1a1 + Ỹ2a2 + Ỹ3a3 + Ỹ4a4

The constraints are:

1 −1 0 0
−1 1 0 0
1 0 −1 0
−1 0 1 0
1 0 0 −1
−1 0 0 1
0 1 −1 0
0 −1 1 0
0 1 0 −1
0 −1 0 1
0 0 1 −1
0 0 −1 1




a1
a2
a3
a4

 6



|X1 − X2|
|X1 − X2|
|X1 − X3|
|X1 − X3|
|X1 − X4|
|X1 − X4|
|X2 − X3|
|X2 − X3|
|X2 − X4|
|X2 − X4|
|X3 − X4|
|X3 − X4|



(10)

Memory issue: p = N(N − 1) , e.g. N = 200 Õ p × N = 7 960 000.
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How does the Kantorovich metric W evolve?

running several simulations using Python

samples in 1D from two normal distributions P = N (µp, σp) and

Q = N (µq, σq)

Xp are the np samples drawn from P
Xq the nq samples drawn from Q

How does W (Xp,Xq) evolve with µq − µp?
How does W (Xp,Xq) evolve with σq − σp?
How does W (Xp,Xq) evolve with nq − np?

IPMs input empirical samples (N 6 1 000)
assessing a linear regression model with R2 using
scikit-learn (Python)
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Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of µq − µp

Histograms and approx. density of the samples Xp and Xq:
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General definition of IPMs
Empirical estimation of IPMs
How does the Kantorovich metric evolve?

Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of µq − µp

Evolution of W (Xp,Xq) with µq − µp:

Is the dependency of W (Xp,Xq) to µq − µp linear? R2 = 0.997.
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General definition of IPMs
Empirical estimation of IPMs
How does the Kantorovich metric evolve?

Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of σq − σp

Is the dependency of W (Xp,Xq) to σq − σp linear? R2 = 0.856.
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General definition of IPMs
Empirical estimation of IPMs
How does the Kantorovich metric evolve?

Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of np = nq

We will not consider the number of samples as a relevant parameter:
np = nq = 10 =⇒ R2 = 0.991
np = nq = 30 =⇒ R2 = 0.997
np = nq = 50 =⇒ R2 = 0.998
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General definition of f-divergences
How does the KL divergence evolve?

II – f-divergences
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General definition of f-divergences
How does the KL divergence evolve?

A f -divergence is a function Df (P,Q) that measures the difference
between two probability distributions P and Q.
We will focus on S ⊂ R.

Definition (f -divergence Df (discrete version))
Let P and Q be two discrete probability distributions over a measurable
set S ⊂ R. Let f be a continuous convex real function on R+, with
f (1) = 0. Then, the f -divergence of P from Q is defined as:

Df (P,Q) =
∑
x∈S

Q(x) f
(
P(x)
Q(x)

)
(11)

Each choice of f in (11) leads to a particular f -divergence.
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Kullback-Leibler divergence
Definition

We choose f (u) = u log(u) in (11).

Definition (Kullback-Leibler divergence DKL)
Let P and Q be two discrete probability distributions over a measurable
set S ⊂ R. The Kullback-Leibler divergence (or KL divergence) of P
from Q is defined as:

DKL(P,Q) =
∑
x∈S

P(x) log
(
P(x)
Q(x)

)
(12)

DKL is non-negative and is 0 if and only if P and Q are the same
distribution.
It is not a true distance because it is not symmetric:
DKL(P,Q) 6= DKL(Q,P) for some P and Q.
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General definition of f-divergences
How does the KL divergence evolve?

Kullback-Leibler divergence
Influence of the number of samples

Two (discrete) normal distributions P = N (0,2) and Q = N (1,2).

å The KL divergence needs to be "normalized".
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Hellinger distance

We choose f (u) = (
√

u − 1)2 in (11).

Definition (Hellinger distance DH)
Let P and Q be two discrete probability distributions over a measurable
set S ⊂ R. The Hellinger distance of P from Q is defined as:

DH(P,Q) =
∑
x∈S

(√
P(x)−

√
Q(x)

)2
(13)

DH is non-negative, is 0 if and only if P and Q are the same distribution
and is symmetric.
DH is a true distance.
DH needs to be "normalized".
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General definition of f-divergences
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Variational distance

We choose f (u) = |u − 1| in (11).

Definition (Variational distance DV)
Let P and Q be two discrete probability distributions over a measurable
set S ⊂ R. The Variational distance of P from Q is defined as:

DV(P,Q) =
∑
x∈S

|P(x)−Q(x)| (14)

DV is non-negative, is 0 if and only if P and Q are the same distribution
and is symmetric.
DV is a true distance.
DV needs to be "normalized".
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General definition of f-divergences
How does the KL divergence evolve?

Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of µq − µp

Two (discrete) normal distributions P = N (µp, σp) and Q = N (µq, σq).

Note: np = nq = 20 000.
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General definition of f-divergences
How does the KL divergence evolve?

Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of µq − µp

Is the dependency of DnKL(P,Q) to (µq − µp)
2 linear? R2 = 1.
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General definition of f-divergences
How does the KL divergence evolve?

Comparison of P = N (µp, σp) and Q = N (µq, σq)
Influence of σq − σp

Is the dependency of DnKL(P,Q) to
√
(σq − σp) linear? R2 = 0.991.
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Context
For the Choquet integral of normal distributions

III – Application to the Choquet integral
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The Choquet integral
Context
For the Choquet integral of normal distributions

Informal definition

The Choquet integral is a non-linear aggregation operator.

Finite set S = {1,2, . . . ,n}. S is a set of criteria.

Definition (Choquet integral C of a vector G)

Let G = (G1, . . . ,Gn) ∈ Rn. The Choquet integral of GGG with respect
to K is the real number:

CK (G) =
n∑

i=1

Gσ(i)Kσ(i) (15)

with σ a permutation of the values of S such that Gσ(1) 6 . . . 6 Gσ(n)
and K ∈ Rn.

We will consider stochastic entries: G = (G1, . . . ,Gn) with
Gi ↪→ N (µ, σ). CK (G) is a random variable.
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The Choquet integral
Context
For the Choquet integral of normal distributions

Context: comparing two methods for computing a
Choquet integral

synthetic samples and not real industrial ones
computing the Choquet integral with stochastic entries

1st method Õ direct method : Monte-Carlo simulation
Õ Xp and P
2nd method Õ new formula giving the distribution of the values
taken by the Choquet integral
Õ Q and Xq (drawn from Q)

goal: verify experimentally that the new formula gives
"acceptable" results
in practice: compare the distance between the distributions from
the 2 methods: P and Q
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The Choquet integral
Context
For the Choquet integral of normal distributions

Presenting the data

Choquet integral of normal distributions.

IPMs input the samples Xp and Xq.

f -divergences input the empirical distributions P and Q.
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The Choquet integral
Context
For the Choquet integral of normal distributions

IPMs and f -divergences

Empirical results:

Average Kantorovich metric W 0.894± 0.033
Normalized Kullback-Leibler divergence DnKL Inf
Normalized Hellinger distance DnH 5.179× 10−4

Normalized Variational distance DnV 1.381× 10−2

å These values are "very small"
Õ the distance between P and Q is "very small"
Õ P and Q are "very close"
Õ the two methods give "very similar" results
Õ the new formula is "correct"
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The Choquet integral
Context
For the Choquet integral of normal distributions

Conclusion
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The Choquet integral
Context
For the Choquet integral of normal distributions

Conclusion

Let P = N (µp, σp) and Q = N (µq , σq) . Xp drawn from P and Xq from Q.

integral probability metrics (IPMs)
each choice of F leads to a specific IPM
focus on the Kantorovich metric W

need to solve a linear programming problem Õ memory issue
because p = N(N − 1) Õ N 6 1 000
µq − µp ↗ =⇒ W (Xp,Xq)↗
σq − σp ↗ =⇒ W (Xp,Xq)↗

f -divergences
each choice of f leads to a specific f -divergence
Kullback-Leibler divergence DKL (not symmetric)

µq − µp ↗ =⇒ DKL(P,Q)↗
σq − σp ↗ =⇒ DKL(P,Q)↗

need to "normalize"
Application to the Choquet integral Õ the new formula gives
"similar" results to the direct method
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The Choquet integral
Context
For the Choquet integral of normal distributions

Thanks for listening.
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