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Abstract

This document constitutes the report of my final-year project (one day per week) at Ecole
des Mines de Nancy. The end goal of this project is to compare two empirical probability
distributions from two different methods for computing the Choquet integral.

The first chapter is about the Choquet integral, a non-linear aggregation operator. I provide a
lot of explanations and examples so that someone new to the Choquet integral can get a good
understanding of it.

The second chapter is about integral probability metrics (IPMs), a popular estimation of dis-
tances on probabilities. In particular, we deal with the Kantorovich metric and the Dudley
metric. We also study the empirical estimation of the Kantorovich metric and implement it with
Python. Note that, under some conditions, the Kantorovich metric is the dual representation of
the Wasserstein distance.

The third chapter is about f -divergences. f -divergences are another method for computing the
distance between two probability distributions. In particular, we deal with the Kullback-Leibler
divergence, the Hellinger distance and the variational distance. We also study the empirical
estimation of these f -divergences and implement them with Python.

The fourth (and last) chapter applies the previous results on IPMs and f -divergences to the data
obtained from the two methods for computing the Choquet integral.

All the codes can be found in my GitHub repository: https://github.com/sylvaincom/
comparison-distributions and are not given in this report.
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Introduction

Why compare data sets’ distributions

The comparison of empirical data distributions from data sets is an important problem in modelling.

For example, in maintenance or anomaly detection, we try to detect or predict when a equipment
will have a failure. Hence, we can use the comparison of empirical data distributions to detect when
a distribution is "shifted" from its "normal" state, a "normal" state corresponding to a state with no
failures and a "shifted" state thus corresponding to a failure.

In machine learning, we can try to estimate an unknown probability measure P by another probabil-
ity measureQwith a generative model. Let us say that we draw nq samples fromQ. Our goal is to
verify that our generative model has drawn nq samples (from Q) that are similar to the np samples
(from P). It is a way of measuring the performance ofQ as an estimate of P (which is unknown).

Moreover, we can try to predict if two data sets come from an actual person or from a GAN (genera-
tive adversarial network) which has been trained to copy the true person’s data. Indeed, GANs are
famous for their deepfakes: media that take a person in an existing image or video and replace them
with someone else’s likeness. By comparing empirical data distributions, we can try to determine if
a video is fake or not.

Several methods for computing the distance between two empirical distributions exist and they
can be split into two categories: IPMs (integral probability metrics) and f -divergences. The goal
of this project is to list and compare these methods.

Context: comparing two methods for computing a Choquet inte-
gral

In this project, we will not use industrial nor real samples but synthetic ones.

Paper [Petot et al., 2018], submitted by my supervisors, Alexandre Voisin and Pierre Vallois, aims
at proving an explicit formula that can give the distribution of the values taken by the Choquet
integral with stochastic inputs. The Choquet integral [Choquet, 1954] is a non-linear aggregation
operator that will be introduced in chapter I. The goal of this project is to show that this formula is
correct from an empirical point of view.

For computing the Choquet integral, a direct method (and proven to be correct) is the Monte-
Carlo simulation. In this project, we try to prove (experimentally) that the formula given in the
paper [Petot et al., 2018] is correct by comparing its samples to the direct Monte-Carlo simulations’
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samples. The program computing the Choquet integral with the formula given in paper [Petot et al.,
2018] has been improved in the project [Pajda and Castera, 2019] by Romain Pajda and Guillaume
Castera.

Why comparing distributions is different from comparing sam-
ples

In the previous section, I explained that our goal is to compare data set distributions. How is
comparing data set distributions different from comparing samples?

Let us suppose that we have np samples drawn from an unknown probability measure P and nq

samples drawn from another unknown probability measureQ. Our goal is to check if the nq samples
(from Q) are "similar" to the np samples (from P). This notion of similarity will be defined more
rigorously further in this report.

If np = nq , a naive idea would be comparing the samples. Let Xp be the random variable under
P with np samples and Xq the random variable under Q with nq samples. Thus, comparing the
samples amounts to computing the expectation E

(|Xp −Xq |
)

which is the distance between two
random variables.

However, we want to compare distributions and not random variables. Indeed, we can have P =Q,
while E

(|Xp −Xq |
) 6= 0. For example, that is the case if Xp , Xq ∼U[0,1] and the random variable have

a finite (e.g. "small") number of samples.
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Chapter I

The Choquet integral

This chapter is about the Choquet integral, a non-linear aggregation operator. I provide a lot of
explanations and examples so that someone new to the Choquet integral can get a good under-
standing of it. Indeed, understanding deeply how the Choquet integral works can be very useful in
order to find the right metric for comparison in the following chapters.

Note that appendix A deals with the numerical computation of the Choquet integral using MATLAB.

This chapter is mainly taken from paper [Petot et al., 2018].

I.1 Definition

I briefly recall the definitions of a capacity and the associated Choquet integral over a finite set
S := {1,2, . . . ,n}. S is a set of criteria.

In order to define the Choquet integral of a vector with respect to a capacity, we need to define what
a capacity is.

A capacity µ over S is a function defined over the family P (S) of sets included in S, valued
in [0,1] which is non-decreasing:

µ(A) Éµ(B) ∀A,B , A ⊂ B ⊂ S (I.1)

and satisfying:
µ(∅) = 0, µ(S) = 1 (I.2)

Definition 1 (Capacity µ).

Now, I introduce an important notation for permutations that we will use to define the Choquet
integral.
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1. Sn stands for the group of permutations of S.

2. Let x := (x1, x2, . . . , xn) ∈Rn . There exists σ ∈Sn such that:

xσ(1) É xσ(2) É . . . É xσ(n) (I.3)

σ is unique if xi 6= x j for all i 6= j . σ depends on x.

3. If σ : S → S, we set:

σ(a : b) := {σ(i ), a É i É b} , 1 É a É b É n (I.4)

We also set σ(a : b) =∅ if a > b.

Notation 1 (Permutation σ).

Now, we can define the (discrete) Choquet integral.

Let µ be a capacity over S and x ∈Rn . The Choquet integral of x with respect to µ is the
real number:

Cµ(x) :=
n∑

i =1
xσ(i )

(
µ [σ (i : n)]−µ [σ (i +1 : n)]

)
(I.5)

where σ is the permutation defined by (I.3).

Definition 2 (Choquet integral C of a vector x).

Let us note that in (I.5), when i = n, we have µ[σ(n +1 : n)] =µ[∅] = 0 according to notation 1 and
definition 1.

In the context of aggregation, the capacity µ(S1) can be seen as the weight or importance of the
subset S1 ∈ S of criteria in the decision. A graphical representation of a set is given in figure I.1. Let
us note that to each node, meaning each set of criteria (such as node {1,4}), corresponds a value (in
[0,1]) of the capacity.

An equivalent formula of (I.5) is the following:

Cµ(x) =
n∑

i =1

(
xσ(i ) −xσ(i−1)

)
µ[σ(i : n)] (I.6)
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Figure I.1: An example of a graph over the set S = {1,2,3,4}. Source: [Kojadinovic, 2006].

Indeed, we have:

Cµ(x) :=
n∑

i =1
xσ(i )

(
µ [σ (i : n)]−µ [σ (i +1 : n)]

)
=

n∑
i =1

xσ(i )µ [σ (i : n)]−
n∑

i =1
xσ(i )µ [σ (i +1 : n)]

=
n∑

i =1
xσ(i )µ [σ (i : n)]−

n+1∑
j =2

xσ( j−1)µ
[
σ

(
j : n

)]
=

n∑
i =1

xσ(i )µ [σ (i : n)]−
n∑

j =1
xσ( j−1)µ

[
σ

(
j : n

)]+ xσ(0)︸︷︷︸
=0 (not defined)

µ [σ(1 : n)]−xσ(n)µ [σ(n +1 : n)]︸ ︷︷ ︸
=0

=
n∑

i =1

(
xσ(i ) −xσ(i−1)

)
µ [σ (i : n)]

I.2 Examples

I.2.1 Explicit computation

To understand more clearly how formula (I.5) of the Choquet integral works, let us try an example
taken from presentation [Kojadinovic, 2006]. Indeed, for someone new to the Choquet integral, it
is quite difficult to understand formula (I.5). Moreover, at the end of this subsection, we give an
interpretation of the Choquet integral from its graph.

We take the graph given in figure I.1. We have n = 4 and we assume x3 É x2 É x4 É x1. The path
between the nodes that our Choquet integral takes is in bold in figure I.1. Let us note that the
chosen path depends on the values of x and not the values of µ. According to notation 1, we have:

σ(1) = 3

σ(2) = 2

σ(3) = 4

σ(4) = 1

13



According to formula (I.5), we have:

Cµ(x1, x2, x3, x4) = xσ(1)
(
µ[σ(1 : 4)]−µ[σ(2 : 4)]

)
+xσ(2)

(
µ[σ(2 : 4)]−µ[σ(3 : 4)]

)
+xσ(3)

(
µ[σ(3 : 4)]−µ[σ(4 : 4)]

)
+xσ(4)

(
µ[σ(4 : 4)]−µ[σ(5 : 4)]

)
= x3

(
µ [{σ(1),σ(2),σ(3),σ(4)}]−µ [{σ(2),σ(3),σ(4)}]

)
+x2

(
µ [{σ(2),σ(3),σ(4)}]−µ [{σ(3),σ(4)}]

)
+x4

(
µ [{σ(3),σ(4)}]−µ [{σ(4)}]

)
+x1

(
µ[{σ(4)}]−µ[∅]

)
= x3

(
µ[{3,2,4,1}]−µ[{2,4,1}]

)
+x2

(
µ[{2,4,1}]−µ[{4,1}]

)
+x4

(
µ[{4,1}]−µ[{1}]

)
+x1

(
µ[{1}]−µ[∅]

)
It is important to visualize the previous formula Cµ(x1, x2, x3, x4) = x3

(
µ[{3,2,4,1}]−µ[{2,4,1}]

)+
x2

(
µ[{2,4,1}]−µ[{4,1}]

)+x4
(
µ[{4,1}]−µ[{1}]

)+x1
(
µ[{1}]−µ[∅]

)
with x3 É x2 É x4 É x1 on the bold

path in figure I.1. The nodes in the path are respectively ∅, {1}, {1,4}, {1,2,4} and {1,2,3,4}. Thus, at
each step on the graph, we add the index of remaining highest value to our current set.

We start from ∅. We move to the node corresponding to the highest value of x which is x1 and
multiply the value x1 at the node {1} by the difference between the capacity of the current node and
the previous one, thus getting the term x1

(
µ[{1}]−µ[∅]

)
. Then, we add the highest value to our

current set {1} which is x4, thus moving to node {1,4}. To our previous sum, we add x4 times the
difference between the capacities of the current node and the previous one, thus getting the term
x4

(
µ[{4,1}]−µ[{1}]

)
. The process goes on. Let us recall that the chosen path depends on the values

of the input x and not the values of the capacity µ.

I.2.2 Why taking the Choquet integral of a vector can be interesting

In this subsection, I give a basic example explaining why the Choquet integral can be highly relevant.

Let us suppose that we have an individual named Lucas. Lucas wishes to go to a restaurant. He can
choose between restaurants A, B, C and D. Each restaurant has three dishes: meat, fish and pizza.
For each restaurant and each dish, we are given a grade from 0 to 20, grade 20 corresponding to the
best possible dish. The grades are given in table I.1.

restaurant meat fish pizza
A 18 15 19
B 15 18 19
C 15 18 11
D 18 15 11

Table I.1: Grades of each dish according to the restaurant

For choosing the restaurant, Lucas’ criteria are the following:
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• For two restaurants, if the pizzas are equally good, then Lucas prefers the restaurant with the
best meat. Example: Lucas prefers A to B.

• For two restaurants, if the pizzas are equally bad, then Lucas prefers the restaurant with the
best fish. Example: Lucas prefers C to D.

The above criteria define the values of our capacity µ. However, in this report, I do not compute the
exact values of the capacity ourselves, but I trust R’s library kappalab.

Our problem is the following: between A, B, C and D, which restaurant is Lucas going to choose?

If we choose to solve our problem using the mean of each restaurant, we obtain:

• For restaurant A, we get 18+15+19
3 ≈ 17.33, thus mean(A) ≈ 17.33

• For restaurant B, we get 15+18+19
3 ≈ 17.33, thus mean(B) ≈ 17.33

• For restaurant C, we get 15+18+11
3 ≈ 14.67, thus mean(C) ≈ 14.67

• For restaurant D, we get 18+15+11
3 ≈ 14.67, thus mean(D) ≈ 14.67

Hence, we have mean(A) = mean(B) and mean(C) = mean(D) so we can not distinguish A from B,
nor C from D. Indeed, the mean operator does not take into account Lucas’ criteria.

However, if we use the Choquet integral Cµ, we get:

• For restaurant A, we get Cµ(A) ≈ 17.83

• For restaurant B, we get Cµ(B) ≈ 16.83

• For restaurant C, we get Cµ(C ) ≈ 15.17

• For restaurant D, we get Cµ(D) ≈ 14.17

Hence, we have Cµ(A) > Cµ(B) > Cµ(C ) > Cµ(D) so we can distinguish the restaurants. Lucas is
going to prefer restaurant A.

For computing the previous Choquet integrals, I used the following R code given in presentation
[Kojadinovic, 2006] (where more details are given):

1 install . packages (’ kappalab ’)
2 library ( kappalab )
3

4 a = c (18 ,15 ,19)
5 b = c (15 ,18 ,19)
6 c = c (15 ,18 ,11)
7 d = c (18 ,15 ,11)
8

9 delta .C = 1
10 Acp = rbind (c(a,b, delta .C),c(c,d, delta .C))
11

12 s = mini . var . capa . ident (3 ,3 ,A. Choquet . preorder = Acp )
13

14 mu = zeta ( s$solution )
15 mu
16

17 Choquet . integral (mu ,a)
18 Choquet . integral (mu ,b)
19 Choquet . integral (mu ,c)
20 Choquet . integral (mu ,d)

15
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Chapter II

Integral Probability Metrics (IPMs)

This chapter is mainly taken from paper [Sriperumbudur et al., 2012].

Given samples from two unknown probability measures, it is often of interest to estimate the
distance (or divergence) between them. Integral probability metrics (IPMs) is a popular empirical
estimation of distances on probabilities. In this report, we will only focus on two of the most popular
IPMs: the Kantorovich metric W and the Dudley metric β. For the empirical estimation, we will
only deal with the Kantorovich metric W , as it seems to be the most common.

II.1 General definition of IPMs

In this section, we do not take into account the empirical aspect of distributions: we will focus on
the empirical aspect starting from section II.2. Thus, we assume that the probability measures are
known here.

Given two probability measures P andQ defined on a measurable space S, the integral
probability metric (IPM) giving the distance between P andQ is defined as

γF (P,Q) := sup
f ∈F

∣∣∣∣ˆ
S

f dP−
ˆ

S
f dQ

∣∣∣∣ (II.1)

where F is a class of real-valued bounded measurable functions on S.

Definition 3 (Integral probability metric γ).

There are several choices of functions F . The choice of F is the crucial distinction between different
IPMs: each choice of F leads to a specific IPM.

With formula (II.1), we understand the term "integral" in "integral probability metrics". Indeed, we
evaluate a complicated mathematical object – a probability – with an integral, which is easier to
manipulate.

Note that for the integrand f , we choose functions that are bounded so that the integrals exist.
Moreover, FW is restricted so that it is easier to get the sup in formula (II.1).
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II.1.1 Kantorovich metric

Setting
F =

{
f :

∥∥ f
∥∥

L É 1
}

(II.2)

in (II.1) yields the Kantorovich metric W , where
∥∥ f

∥∥
L is the Lipschitz semi-norm of a

bounded continuous real-valued function f on a metric space (S,ρ):

∥∥ f
∥∥

L := sup

{∣∣ f (x)− f (y)
∣∣

ρ(x, y)
: x 6= y in S

}
(II.3)

Definition 4 (Kantorovich metric W ).

Note that the index L in
∥∥ f

∥∥
L stands for Lipschitz.

We introduce the notation FW =
{

f :
∥∥ f

∥∥
L É 1

}
.

Note that, under some conditions, the Kantorovich metric is the dual representation of the Wasser-
stein distance. Indeed, according to the Kantorovich-Rubinstein theorem, when S is separable, the
Kantorovich metric W is the dual representation of the Wasserstein distance, more specifically, the
L1-Wasserstein distance W1. Hence, we understand better the notation W for the Kantorovich
metric.

II.1.2 Dudley metric

Setting
F =

{
f :

∥∥ f
∥∥

BL É 1
}

(II.4)

in (II.1) yields the dual-bounded Lipschitz distance – also called the Dudley metric β –
where: ∥∥ f

∥∥
BL :=

∥∥ f
∥∥∞+∥∥ f

∥∥
L (II.5)

with
∥∥ f

∥∥∞ := sup
{∣∣ f (x)

∣∣ : x ∈ S
}
.

Definition 5 (Dudley metric β).

Note that the index BL in
∥∥ f

∥∥
BL stands for (dual-)bounded Lipschitz.

We introduce the notation Fβ =
{

f :
∥∥ f

∥∥
BL É 1

}
.

II.1.3 Example: explicit computation of the Kantorovich metric

In this subsection, I give an example of explicit computation of the Kantorovich metric W to better
understand how it works and why it measures a distance between two distributions. For now, we
will not deal with the estimator of W .
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For ease of computation, let us consider P and Q defined on the Borel-algebra of Rd as product
measures:

P = ⊗d
i =1P

(i ) and Q = ⊗d
i =1Q

(i ) (II.6)

where P(i ) andQ(i ) are defined on the Borel σ-algebra of R. In this setting, when ρ(x, y) = ‖x− y‖1, it
can be shown that:

W (P,Q) =
d∑

i =1
W

(
P(i ),Q(i )

)
(II.7)

where:

W
(
P(i ),Q(i )

)
=

ˆ
R

∣∣FP(i ) (x)−FQ(i ) (x)
∣∣ dx (II.8)

and:
FP(i ) (x) =P(i ) ((−∞, x]) (II.9)

Let S = ×d
i =1[ai , si ]. Suppose P(i ) = U [ai ,bi ] andQ(i ) = U [ri , si ], which are uniform distributions on

[ai ,bi ] and [ri , si ], respectively, where −∞< ai É ri É bi É si <∞. Then, we have:

W
(
P(i ),Q(i )

)
=

si + ri −ai −bi

2
(II.10)

and W (P,Q) follows (II.7).

In this example, as can be seen in equation (II.10), the Kantorovich metric W relies on different
simulations (the P(i ) and Q(i )) and depends on the parameters ai ,bi ,ri and si of the uniform
distributions (and not the values of the realizations of the random variables). Once we chose all the
ai ,bi ,ri and si , then W

(
P(i ),Q(i )

)
is completely determined: it is a real number (and not random

variable for example).

How can we interpret the Kantorovich metric W as a distance?

According to (II.10), if we choose the intervals [ai ,bi ] and [ri , si ] to be equal, then the distance
according to the Kantorovich metric is null, which is intuitive considering the properties of a
mathematical distance.

If we choose the intervals to be slightly shifted from each other:

∀i ∈ J1,dK


ai = 0

bi = 1

ri = 1/4

si = 5/4

then:

∀i ∈ J1,dK W
(
P(i ),Q(i )

)
=

1

4
so that W (P,Q) =

d

4
> 0

Moreover, when the dimension d increases, the distance W (P,Q) increases, which is intuitive.

If we choose the intervals to be more shifted from each other:

∀i ∈ J1,dK


ai = 0

bi = 1

ri = 1/2

si = 3/2

19



then:

∀i ∈ J1,dK W
(
P(i ),Q(i )

)
=

1

2
so that W (P,Q) =

d

2
> d

4
(II.11)

and the distance is greater than previously, which is intuitive.

Hence, the Kantorovich metric W measures the distance between two distributions and increases
when the difference between the parameters of the distributions increases. That is why, in section
II.4, we are going to carry out experiments to see how the empirical Kantorovich metric of two
probability distributions evolves with their parameters.

II.2 Definition: empirical estimation of IPMs

In practice, we are not always able to explicitly compute an IPM, we often need to compute
an estimator of the IPM instead. That is the case when P and Q are unknown but simulable
distributions for example.

In simple words, the empirical estimator of an IPM is the discrete version of formula (II.1).

Given
{

X (1)
1 , X (1)

2 , . . . , X (1)
m

}
and

{
X (2)

1 , X (2)
2 , . . . , X (2)

n

}
, which are i.i.d. samples drawn ran-

domly from P andQ, respectively, the empirical estimator of γF (P,Q) is given by

γF (Pm ,Qn) := sup
f ∈F

∣∣∣∣∣ N∑
i =1

Ỹi f (Xi )

∣∣∣∣∣ (II.12)

where

Pm :=
1

m

m∑
i =1

δX (1)
i

and Qn :=
1

n

n∑
i =1

δX (2)
i

represent the empirical distributions of P andQ, respectively,

N = n +m

and

Ỹi =
1

m
when Xi = X (1)

i for i = 1, . . . ,m

Ỹm+i = − 1

n
when Xm+i = X (2)

i for i = 1, . . . ,n

Definition 6 (Empirical estimator of an IPM).

Let us emphasize that formula (II.12) is a definition and not a result.

Note that the empirical estimator of an IPM inputs the samples directly (and not the empirical
probability distributions).
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How is formula (II.12) the discrete version of equation (II.1)? We have:

γF (Pm ,Qn) := sup
f ∈F

∣∣∣∣∣ N∑
i =1

Ỹi f (Xi )

∣∣∣∣∣
= sup

f ∈F

∣∣∣∣∣ 1

m

m∑
i =1

f (Xi )− 1

n

N∑
i =m+1

f (Xi )

∣∣∣∣∣
= sup

f ∈F

∣∣∣∣∣ 1

m

m∑
i =1

f
(

X (1)
i

)
− 1

n

n∑
j =1

f
(

X (2)
i

)∣∣∣∣∣
In this report, for the empirical estimation of IPMs, we are only going to deal with the Kantorovich
metric.

II.3 Empirical estimator of the Kantorovich metric

II.3.1 Definition

In order to compute the empirical estimator of the Kantorovich metric W , we need to find the
function f that realizes the sup and that solves (II.12) for F = FW . Sometimes, we will only be able
to approximate f numerically.

For all α ∈ [0,1], the following definition solves (II.12) for F = FW :

∀x ∈ S fα(x) :=α min
i =1,...,N

(
a?i +ρ (x, Xi )

)+ (1−α) max
i =1,...,N

(
a?i −ρ (x, Xi )

)
(II.13)

where

W (Pm ,Qn) =
N∑

i =1
Ỹi a?i (II.14)

and
{

a?i
}N

i =1 solve the following linear program,

max
a1,...,aN

{
N∑

i =1
Ỹi ai : −ρ (

Xi , X j
)É ai −a j É ρ

(
Xi , X j

)
,∀i , j

}
(II.15)

Theorem 1 (Empirical estimator of the Kantorovich metric).

Here, we have a rigorous theorem (based on definition 6) that is proven in paper [Sriperumbudur
et al., 2012].

In this project, our goal is to compute the empirical estimator of the Kantotovich metric W (Pm ,Qn)
as given in (II.14). Hence, the value of the objective function solving (II.15) will be the "distance"
we are looking for. Note that we do not need to compute fα given by (II.13).

How can we implement theorem 1 into an algorithm? The following subsection will answer our
question, as (II.15) is a linear programming problem.
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II.3.2 Solving the linear programming problem

How can we solve the linear programming problem (II.15)?

First of all, we must write the linear programming problem (II.15) into its canonical form:

{
max

(
cT a

)
M a É b

(II.16)

where a = (a1, . . . , aN ) are the variables of the problem, c = (c1, . . . ,cN ) are the coefficients of the
objective function, M ∈Mp,N and b = (b1, . . . ,bp ) are the non-negative constraints.

Let us transform formula (II.15) into its canonical form (II.16) in a simple case: N = 4 (for example).

The objective function is:

N∑
i =1

Ỹi ai

and amounts to:

Ỹ1a1 + Ỹ2a2 + Ỹ3a3 + Ỹ4a4 (II.17)

Hence, we can relate (II.17) to (II.16) with:

c =


Ỹ1

Ỹ2

Ỹ3

Ỹ4

 (II.18)

The constraints:

∀(i , j ) ∈ J1, NK2 −ρ (
Xi , X j

)É ai −a j É ρ
(
Xi , X j

)
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amount to:



−ρ (X1, X2) É a1 −a2 É ρ (X1, X2)

−ρ (X1, X3) É a1 −a3 É ρ (X1, X3)

−ρ (X1, X4) É a1 −a4 É ρ (X1, X4)

−ρ (X2, X3) É a2 −a3 É ρ (X2, X3)

−ρ (X2, X4) É a2 −a4 É ρ (X2, X4)

−ρ (X3, X4) É a3 −a4 É ρ (X3, X4)

⇐⇒



a1 −a2 É ρ (X1, X2)

a1 −a2 É ρ (X1, X2)

a1 −a3 É ρ (X1, X3)

a3 −a1 É ρ (X1, X3)

a1 −a4 É ρ (X1, X4)

a4 −a1 É ρ (X1, X4)

a2 −a3 É ρ (X2, X3)

a3 −a2 É ρ (X2, X3)

a2 −a4 É ρ (X2, X4)

a4 −a2 É ρ (X2, X4)

a3 −a4 É ρ (X3, X4)

a4 −a3 É ρ (X3, X4)

⇐⇒



1 −1 0 0
−1 1 0 0
1 0 −1 0
−1 0 1 0
1 0 0 −1
−1 0 0 1
0 1 −1 0
0 −1 1 0
0 1 0 −1
0 −1 0 1
0 0 1 −1
0 0 −1 1




a1

a2

a3

a4

É



ρ (X1, X2)
ρ (X1, X2)
ρ (X1, X3)
ρ (X1, X3)
ρ (X1, X4)
ρ (X1, X4)
ρ (X2, X3)
ρ (X2, X3)
ρ (X2, X4)
ρ (X2, X4)
ρ (X3, X4)
ρ (X3, X4)



(II.19)

Hence, we can relate (II.19) to (II.16) with:

M =



1 −1 0 0
−1 1 0 0
1 0 −1 0
−1 0 1 0
1 0 0 −1
−1 0 0 1
0 1 −1 0
0 −1 1 0
0 1 0 −1
0 −1 0 1
0 0 1 −1
0 0 −1 1



∈Mp,N and b =



ρ (X1, X2)
ρ (X1, X2)
ρ (X1, X3)
ρ (X1, X3)
ρ (X1, X4)
ρ (X1, X4)
ρ (X2, X3)
ρ (X2, X3)
ρ (X2, X4)
ρ (X2, X4)
ρ (X3, X4)
ρ (X3, X4)



∈Rp (II.20)
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From (II.20), we can easily infer that:

p = 2×
( ∑

1Éi< jÉN
1

)
(II.21)

= 2×
(

N∑
l=1

l −N

)
(II.22)

= 2×
(

N−1∑
l=1

l

)
(II.23)

= 2×
(

N (N −1)

2

)
(II.24)

= N (N −1) (II.25)

Hence, we have defined our linear programming problem in the canonical form.

Now, we can try solving it with the Simplex algorithm. Actually, we will use the PuLP library from
Python [Mitchell et al., 2011] to solve it.

The complexity of our linear programming problem grows fast because M ∈Mp,N and b ∈Rp with
p = N (N−1). For example, if we take N = 200 (meaning only 200 samples total for both distributions),
we have p = 200×199 = 39 800, meaning p = 39 800 constraints, which is already quite huge to solve!
Moreover, the number of values in M is p ×N = 39 800×200 = 7 960 000, thus approximately 8
million! Thus, in this report, from a numerical view point, we will only be able to compute empirical
Kantorovich metrics for short numbers of samples (less than 1 000 total samples). Note that we are
confronted with a memory error while the processing time is quite reasonable (less than 30 seconds
for N = 300).

For further work, as M contains a lot of zeros, we could try coding it as a sparse matrix. However, I
am not sure if the PuLP library can work with sparse matrices. Moreover, dealing with M as a sparse
matrix does not change the fact that we have a lot of constraints.

Thus, in this report, computing the Kantorovich metric can only be done when we have less than
1 000 total samples (which is sadly not much!).

II.4 How does the Kantorovich metric of two probability distribu-
tions evolve with their parameters?

In this section, we are going to interpret the empirical Kantorovich metric W by running several
simulations using Python. We will always choose ρ(x, y) = |x − y | for (x, y) ∈R2 as the space metric,
because the samples will always be one-dimensional.

We are going to compare two (empirical) normal distributions by modifying their parameters
(means and standard deviations) and interpret how their Kantorovich metric evolves. We are going
to do the same with two exponential distributions and two uniform distributions.

The aim is to see how the distance evolves according to the parameters but also to set some reference
values. For example, reference values will allow to say that a value of an IPM of value 1 is "low",
meaning that the distributions are "close".
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Let us recall that, contrary to f -divergences, IPMs input the empirical samples, and not the em-
pirical probability distributions. Moreover, due to the memory issue, we can only compute the
Kantorovich metric for a total number of samples that is inferior to 1 000.

In this chapter, to fit a model, we use the the linear regression function from scikit-learn [Pe-
dregosa et al., 2011]. The score method returns the coefficient of determination R2 of the predic-
tion.

II.4.1 Comparison of two normal distributions

In this subsection, we consider two normal distributions P = N (µp ,σp ) and Q = N (µq ,σq ). Xp are
the samples drawn from P and Xq are the samples drawn from Q. Let np be the number of samples
generated from P = N (µp ,σp ) and nq the number of samples generated fromQ = N (µq ,σq ).

II.4.1.1 Influence of the difference between the means

First of all, let us plot the histograms from the samples to visualize how the Kantorovich metric
evolves with the difference µq −µp . Note that the data is samples, from which we have drawn
histogram, then approximated their density. See figure II.1. All the parameters are the same, only
the means are different. On the graphic on the left, we have µq −µp = 1 and W = 3.721, while on the
right we have µq −µp = 5 and W = 7.459. Hence, when the difference between the means increases
(thus the distributions are "more different"), the Kantorovich metric W increases which justifies
why W is a "distance".

Figure II.1: Visualizing the influence of the difference between the means of two normal distribu-
tions with histograms

Now, we are going to plot the Kantorovich metric itself. We choose np = nq = 30, which is a
sufficient number of samples according to the results of our simulations. Thus, we have N = 60. For
P = N (µp ,σp ), we fix all the parameters: µp = −5 and σp = 2. ForQ = N (µq ,σq ), we only fix σq = 2,
while µq varies from 0 to 20. See figure II.2.

Observing figure II.2, can we say that the dependency of W (Xp , Xq ) to µq −µp is linear? Yes, from
an empirical point of view. Indeed, the linear regression score R2 is 0.997.
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Figure II.2: Evolution of the Kantorovich metric with the difference between the means of two
normal distributions

Now we do the same as previously, but by changing the fixed value of µp and the fixed values of the
σp =σq . For P = N (µp ,σp ), we fix all the parameters: µp = 3 and σp = 4. ForQ = N (µq ,σq ), we only
fix σq = 4, while µq varies from 0 to 20. See figure II.3. It seems to be symmetric and there are two
linear regressions (one decreasing on the left and the other one increasing on the right).

II.4.1.2 Influence of the difference between the standard deviations

Now, we do the same as previously, but by modifying the standard deviations (and keeping the
means fixed). See figure II.4. When the difference between the standard deviations increases, the
Kantorovich metric W increases.

Observing figure II.4, can we say that the dependency of W (Xp , Xq ) to σq −σp is linear? Not really.
Indeed, the linear regression score R2 is 0.856. Note that only the part at the beginning seems to
cause problem for a linear model, which explains why the regression score is not closer to 1.

II.4.1.3 Influence of the number of samples

Now, we do the same as subsubsection II.4.1.1 with the difference between means, but three times,
each time changing the number of samples: np = nq = 10 then np = nq = 30 then np = nq = 50. See
figure II.5 for np = nq = 10 and np = nq = 50. See the previous figure II.2 for np = nq = 30.

The number of samples does not seem to have an influence, only that the linear regression slightly
gets closer to 1 when the number of samples increases. Indeed, for np = nq = 10 we have R2 = 0.991,
for np = nq = 30 we have R2 = 0.997 and for np = nq = 50 we have R2 = 0.998. Hence, in this report,
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Figure II.3: Evolution of the Kantorovich metric with the difference between the means of two
normal distributions

Figure II.4: Evolution of the Kantorovich metric with the difference between the standard deviations
of two normal distributions
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Figure II.5: Evolution of the Kantorovich metric with the difference between the means of two
normal distributions, for several numbers of samples

we will not consider the number of samples as a relevant parameter.

II.4.2 Comparison of two exponential distributions

We choose np = nq = 30, which is a sufficient number of samples according to the results of our
simulations. Thus, we have N = 60. For P = E (λp ), we fix λp = 1. ForQ = E (λq ), λq varies from 1 to
20. See figure II.6. When the difference between the parameters increases, the Kantorovich metric
W increases.

Observing figure II.6, can we say that the dependency of W (Xp , Xq ) to λq −λp is linear? Not really.
Indeed, the linear regression score R2 is 0.865.

II.4.3 Comparison of two uniform distributions

We choose np = nq = 30, which is a sufficient number of samples according to the results of our
simulations. Thus, we have N = 60. We consider P =U ([a, a +h]) andQ =U ([r,r +h]) where h is the
length of the intervals. We fix h = 2. For P, we fix a = 0. ForQ, r varies from 1 to 20. See figure II.7.
When the difference between the parameters increases, the Kantorovich metric W increases.

Observing figure II.7, can we say that the dependency of W (Xp , Xq ) to r −a is linear? Yes, from an
empirical point of view. Indeed, the linear regression score R2 is 1. The linear dependency obtained
numerically is coherent with the explicit formula (II.10).
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Figure II.6: Evolution of the Kantorovich metric with the difference between the parameters of two
exponential distributions

Figure II.7: Evolution of the Kantorovich metric with the difference between the parameters of two
uniform distributions
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II.5 Conclusion on IPMs (Kantorovich metric)

In this chapter, we studied integral probability metrics γF . IPMs are a popular estimation of
distance on two probability distributions, that input the samples drawn from these distributions.

The choice of F is the crucial distinction between different IPMs: each choice of F leads to a
specific IPM. We dealt with the Kantorovich metric W and the Dudley metric β, which are the most
popular.

We obtained an explicit formula for the Kantorovich metric W of two uniform distributions and
we realized that W intuitively corresponds to the common notion of distance: when the difference
between the parameters (of the distributions) increases, W increases.

Hence, we carried out several experiments in order to observe how IPMs evolve with the parameters
of the distributions. For the empirical estimation, we focused on the Kantorovich metric W of
normal, exponential and uniform distributions. Note that the number of samples does not have a
relevant influence on the value of W and that we took N = 60 total samples in our simulations.

For the numerical computation of W , we can not have too many samples (less than 1 000 total
samples) because of the memory issue met when solving the linear programming problem (we
used the PuLP library). Let us not forget that we must choose the space metric ρ. In this report we
always chose ρ(x, y) = |x − y | for (x, y) ∈R2 as the samples were always one-dimensional.

The empirical results are grouped in table II.1. When the difference between the parameters
increases, the distance increases.

distribution P distributionQ difference between the pa-
rameters∆

R2 of the linear regression of
W ∝∆

N (µp ,σp ) N (µq ,σq ) µq −µp 0.997
N (µp ,σp ) N (µq ,σq ) σq −σp 0.856
E (λp ) E (λq ) λq −λp 0.865
U ([a, a +h]) U ([r,r +h]) r −a 1

Table II.1: Synthesis of the simulations on the Kantorovich metric W of two distributions P andQ:
evolution of W according to the difference between the parameters of P andQ
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Chapter III

f-divergences

In probability theory, a f -divergence is a function D f (P‖Q) that measures the difference between
two probability distributions P andQ.

III.1 General definition of f-divergences

According to [Basseville, 1988], the general notion of f -divergence has been introduced by Csiszar
and indepentently by Ali & Silvey. It is based upon the fact that it is intuitively "natural" to measure
the remoteness of two probability distributions P and Q with the aid of the "dispersion" – with
respect to P – of the likelihood ratioΦ(x) = Q(x)

P(x) : if P andQ are two densities on R, when they "move"
away from each other, Φ increases on a set of decreasing P-probability and decreases on a set of
increasing P-probability.

According to [Basseville, 1988], we have the continuous version:

Let P and Q be two probability distributions. Let f be a convex real function on R+. Then,
the f -divergence of P fromQ is defined as:

D f (P,Q) := EP

[
f

(
dQ

dP

)]
(III.1)

Definition 7 ( f -divergence D f (continuous version)).

According to [Csiszár and Shields, 2004], we have the discrete version:

Let P andQ be two discrete probability distributions over a space S. Let f be a continuous
convex real function on R+, with f (1) = 0. Then, the f -divergence of P fromQ is defined
as:

D f (P,Q) :=
∑
x∈S

Q(x) f

(
P(x)

Q(x)

)
(III.2)

Definition 8 ( f -divergence D f (discrete version)).
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Many common divergences, such as Kullback-Leibler divergence, Hellinger distance, and total
variation distance, are special cases of f -divergence, coinciding with a particular choice of f in
(III.2). In the following subsections, we are going to define the three previous divergences (in the
discrete case), using [Jordan, xxxx]. We choose only these three because they are the most popular.

III.1.1 Kullback-Leibler divergence

The definition is taken from [Jordan, xxxx] and the Deep Learning textbook pages 71 and 72 [Good-
fellow et al., 2016].

For the Kullback-Leibler divergence (III.3), we choose f (u) = u log(u) in (III.2).

LetP andQ be two discrete probability distributions over a space S. The Kullback-Leibler
divergence (or KL divergence) of P fromQ is defined as:

DKL(P,Q) :=
∑
x∈S

P(x) log

(
P(x)

Q(x)

)
(III.3)

if ∀x ∈ S,P(x)Q(x) > 0.

Definition 9 (Kullback-Leibler divergence DKL).

In the case of discrete variables, the KL divergence DKL(P,Q) is the extra amount of information
(measured in bits if we use the base-2 logarithm, but in machine learning we usually use nats
and the natural logarithm) needed to send a message containing symbols drawn from probability
distribution P, when we use a code that was designed to minimize the length of messages drawn
from probability distributionQ.

The KL divergence has many useful properties, most notably being non-negative. The KL diver-
gence is 0 if and only if P and Q are the same distribution in the case of discrete variables, or equal
“almost everywhere” in the case of continuous variables. Because the KL divergence is non-negative
and measures the difference between two distributions, it is often conceptualized as measuring
some sort of distance between these distributions. It is not a true distance because it is not sym-
metric: DKL(P,Q) 6= DKL(Q,P) for some P andQ. This asymmetry means that there are important
consequences to the choice of whether to use DKL(P,Q) or DKL(Q,P).

As can be seen in formula (III.3), DKL is a sum of positive terms. Thus, the more terms we have, the
higher the KL divergence is. Hence, for the numerical computation, DKL will increase when our
empirical distributions P andQ have more samples. See figure III.1. This is problematic because we
want to measure the "distance" between two distributions and the KL divergence obtained should
not depend on the number of samples, or we could not compare KL divergences with each other.
For example, if we have P =Q, thus we should have an empirical KL divergence close to 0, but if we
have a lot of samples, the estimated KL divergence would be high.

We should normalize formula (III.3) by dividing the KL divergence by the number of samples of a
distribution np (= nq ). See figure III.2. In the rest of this report, we will only use the normalized KL
divergence. We refer to the normalized Kullback-Leibler divergence as DnKL.
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Figure III.1: When our empirical distributions have more samples, the KL divergences increases.

Figure III.2: When our empirical distributions have more samples, the normalized KL divergences
stay constant.
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III.1.2 Hellinger distance

For the Hellinger distance (III.4), we choose f (u) =
(p

u −1
)2 in (III.2).

Let P and Q be two discrete probability distributions over a space S. The Hellinger
distance of P fromQ is defined as:

DH(P,Q) :=
∑
x∈S

(√
P(x)−

√
Q(x)

)2
(III.4)

Definition 10 (Hellinger distance).

The Hellinger distance is non-negative, is 0 if and only if P andQ are the same distribution (in the
case of discrete variables) and symmetric. As its name suggests, contrary to the KL divergence, the
Hellinger distance is a true distance.

As can be seen in formula (III.4), DH is a sum of positive terms. Similar to the KL divergence, we
should normalize formula (III.4) by dividing the Hellinger distance by the number of samples of a
distribution np (= nq ). In the rest of this report, we will only use the normalized Hellinger distance.
We refer to the normalized Hellinger distance as DnH.

III.1.3 Variational distance

For the variational distance (III.5), we choose f (u) = |u −1| in (III.2).

Let P and Q be two discrete probability distributions over a space S. The variational
distance of P fromQ is defined as:

DV(P,Q) :=
∑
x∈S

|P(x)−Q(x)| (III.5)

Definition 11 (Variational distance).

The variational distance is non-negative, is 0 if and only if P andQ are the same distribution (in the
case of discrete variables) and symmetric. As its name suggests, contrary to the KL divergence, the
variational distance is a true distance.

As can be seen in formula (III.5), DV is a sum of positive terms. Similar to the KL divergence, we
should normalize formula (III.5) by dividing the Variational distance by the number of samples of a
distribution np (= nq ). In the rest of this report, we will only use the normalized variational distance.
We refer to the normalized variational distance as DnV.
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III.2 How does the Kullback-Leibler divergence of two probabil-
ity distributions evolve with their parameters?

In this section and the following ones III.3 and III.4, we are going to interpret the empirical
f -divergences by running several simulations using Python. The samples will always be one-
dimensional.

We are going to compare two (empirical) normal distributions by modifying their parameters
(means and standard deviations) and interpret how their f -divergence evolves. We are going to do
the same with two exponential distributions and two uniform distributions.

Let us recall that, contrary to IPMs, f -divergences input the empirical probability distributions,
and not the empirical samples. Moreover, contrary to the Kantorovich metric, there is no memory
issue due to the number of samples.

In this chapter, to fit a model, we use the the linear regression function from scikit-learn. The
score method returns the coefficient of determination R2 of the prediction.

Here, we start with the normalized Kullback-Leibler divergence DnKL. We recall that the normalized
KL divergence does not depend upon the number of samples: it is parameter that we will not study.

III.2.1 Comparison of two normal distributions

In this subsection, we consider two normal distributions P = N (µp ,σp ) andQ = N (µq ,σq ).

III.2.1.1 Influence of the difference between means

First of all, let us plot the probability distributions to visualize how the normalized KL divergence
evolves with the difference µq −µp . See figure III.3. All the parameters are the same, only the means
are different. On the graphic on the left, we have µq −µp = 1 and DnKL = 0.06, while on the right we
have µq −µp = 5 and DnKL = 0.156. Hence, when the difference between the means increases (thus
the distribution are "more different"), DnKL increases which justifies why DnKL is a "distance".

Note that we can visualize that DnKL is asymmetric on figure III.4. Indeed, we switched the values
of the parameters of P andQ, but the values of the normalized KL divergence are different.

Now, we are going to plot the normalized KL divergence itself. For P = N (µp ,σp ), we fix all the
parameters with µp = 0 and σp = 2. For Q = N (µq ,σq ), we only fix σq = 2, while µq varies from
0 to 20. See figure III.5. Observing figure III.5, can we say that the dependency of DnKL(P,Q) to
(µq −µp )2 is linear? Yes, from an empirical point of view. Indeed, the linear regression score R2 is 1.

Now we do the same as previously, but by changing the fixed value of µp and the fixed values of the
σp =σq . For P = N (µp ,σp ), we fix all the parameters: µp = 3 and σp = 4. ForQ = N (µq ,σq ), we only
fix σq = 4, while µq varies from 0 to 20. See figure III.6. Observing figure III.6, can we say that the
dependency of DnKL(P,Q) to (µq −µp )2 is linear? Yes, from an empirical point of view. Indeed, the
linear regression score R2 is once again 1. We obtain the same result as previously.
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Figure III.3: Visualizing the influence of the difference means of two normal distributions plotting
the (empirical) distributions. We have np = nq = 20 000.

Figure III.4: Visualizing the asymmetry of the normalized KL divergence plotting the (empirical)
distributions. We have np = nq = 20 000 for the two normal distributions.
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Figure III.5: Evolution of the normalized KL divergence with the difference between means for
normal distributions

Figure III.6: Evolution of the normalized KL divergence with the difference between means of two
normal distributions
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III.2.1.2 Influence of the difference between the standard deviations

Now, we do the same as previously, but by modifying the standard deviations (and keeping the
means fixed). See figure III.7. When the difference between the standard deviations increases, DnKL

increases. Observing figure III.7, can we say that the dependency of DnKL(P,Q) to
√

(σq −σp ) is
linear? Yes, from an empirical point of view. Indeed, the linear regression score R2 is 0.991.

Figure III.7: Evolution of the normalized KL divergence with the difference between standard
deviations of two normal distributions

III.2.2 Comparison of two exponential distributions

For P = E (λp ), we fix λp = 1. For Q = E (λq ), λq varies from 2 to 20. See figure III.8. When the
difference between the parameters increases, DnKL increases. Note that we received a compilation
error because we had to divide by 0 a few times. Observing figure III.8, it is not relevant to try to
model DnKL according to λq −λp .

III.2.3 Comparison of two uniform distributions

We consider P =U ([a, a +h]) and Q =U ([r,r +h]) where h is the length of the intervals. We fix h = 2.
For P, we fix a = 0. For Q, r varies from 0 to 20. See figure III.9. When the difference between the
parameters increases, DnKL increases. Note that we received a compilation error because we had to
divide by 0 (a uniform distribution often takes value 0), thus r −a only goes to 1.0. Observing figure
III.9, can we say that the dependency of DnKL(P,Q) to r −a is linear? Yes, from an empirical point of
view. Note that we were not able to compute the linear regression score R2, because there are some
infinite values.
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Figure III.8: Evolution of the normalized KL divergence with the difference between the parameters
of two exponential distributions

Figure III.9: Evolution of the normalized KL divergence with the difference between the parameters
of two uniform distributions. Computation error for r −a > 1 because we divide by 0.
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III.3 How does the Hellinger distance of two probability distribu-
tions evolve with their parameters?

See the first paragraphs of section III.2 for more information about the goal and structure of this
current section.

III.3.1 Comparison of two normal distributions

In this subsection, we consider two normal distributions P = N (µp ,σp ) andQ = N (µq ,σq ).

III.3.1.1 Influence of the difference between means

Now, we are going to plot the normalized KL divergence itself. For P = N (µp ,σp ), we fix all the
parameters with µp = 0 and σp = 2. For Q = N (µq ,σq ), we only fix σq = 2, while µq varies from 0
to 20. See figure III.10. Observing figure III.10, it is not relevant to try to model DnH according
to µq −µp . Note that for µq −µp > 15, DnH seems to be constant. What is most surprising is the
decreasing part around the middle.

Figure III.10: Evolution of the normalized Hellinger distance with the difference between means for
normal distributions

III.3.1.2 Influence of the difference between the standard deviations

Now, we do the same as previously, but by modifying the standard deviations (and keeping the
means fixed). See figure III.11. When the difference between the standard deviations increases,
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DnH increases. Observing figure III.11, it is not relevant to try to model DnH according to σq −σp .

Figure III.11: Evolution of the normalized Hellinger distance with the difference between standard
deviations of two normal distributions

III.3.2 Comparison of two exponential distributions

For P = E (λp ), we fix λp = 1. For Q = E (λq ), λq varies from 2 to 20. See figure III.12. When the
difference between the parameters increases, DnH increases. Note that we received a compilation
error because we had to divide by 0 a few times. Observing figure III.12, it is not relevant to try to
model DnH according to λq −λp .

III.3.3 Comparison of two uniform distributions

We consider P =U ([a, a +h]) and Q =U ([r,r +h]) where h is the length of the intervals. We fix h = 2.
For P, we fix a = 0. For Q, r varies from 0 to 20. See figure III.13. Observing figure III.13, it is not
relevant to try to model DnH according to r −a. The curve even decreases on the right side.
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Figure III.12: Evolution of the normalized Hellinger distance with the difference between the
parameters of two exponential distributions

Figure III.13: Evolution of the Hellinger distance with the difference between the parameters of two
uniform distributions
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III.4 How does the variational distance of two probability distri-
butions evolve with their parameters?

See the first paragraphs of section III.2 for more information about the goal and structure of this
current section.

III.4.1 Comparison of two normal distributions

In this subsection, we consider two normal distributions P = N (µp ,σp ) andQ = N (µq ,σq ).

III.4.1.1 Influence of the difference between means

Now, we are going to plot the normalized variational distance itself. For P = N (µp ,σp ), we fix all
the parameters with µp = 0 and σp = 2. ForQ = N (µq ,σq ), we only fix σq = 2, while µq varies from
0 to 20. See figure III.14. Observing figure III.14, it is not relevant to try to model DnV according
to µq −µp . Note that for µq −µp > 15, DnV seems to be constant. What is most surprising is the
decreasing part around the middle.

Figure III.14: Evolution of the normalized variational distance with the difference between means
for normal distributions

III.4.1.2 Influence of the difference between the standard deviations

Now, we do the same as previously, but by modifying the standard deviations (and keeping the
means fixed). See figure III.15. When the difference between the standard deviations increases, DnV
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increases (up to a point of saturation). Observing figure III.15, it is not relevant to try to model DnV

according to σq −σp .

Figure III.15: Evolution of the variational distance with the difference between standard deviations
of two normal distributions

III.4.2 Comparison of two exponential distributions

For P = E (λp ), we fix λp = 1. For Q = E (λq ), λq varies from 2 to 20. See figure III.16. When the
difference between the parameters increases, DnV increases. Note that we received a compilation
error because we had to divide by 0 a few times. Observing figure III.16, it is not relevant to try to
model DnV according to λq −λp .

III.4.3 Comparison of two uniform distributions

We consider P =U ([a, a +h]) and Q =U ([r,r +h]) where h is the length of the intervals. We fix h = 2.
For P, we fix a = 0. For Q, r varies from 0 to 20. See figure III.17. Observing figure III.17, it is not
relevant to try to model DnV according to r −a. The curve even decreases on the right side.
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Figure III.16: Evolution of the normalized variational distance with the difference between the
parameters of two exponential distributions

Figure III.17: Evolution of the variational distance with the difference between the parameters of
two uniform distributions
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III.5 Conclusion on f-divergences

In this chapter, we studied f -divergences D f . f -divergences are a popular estimation of distance
on two probability distributions, that input the empirical probability distributions.

The choice of f is the crucial distinction between different f -divergences: each choice of f leads to
a specific f -divergence. We dealt with the Kullback-Leibler divergence DKL, the Hellinger distance
DH and the variational distance DV, which are the most popular.

DKL, DH and DV are all-non negative, equal to zero if and only if P andQ are the same distribution.
The numerical computation of these f -divergences is direct and very easy: contrary to IPMs, we do
not need to solve any linear programming problem and we have no memory issue.

Note that DKL is less convenient than DH and DV because it is not symmetric, thus it is not a true
distance. Moreover, in the computation of the empirical DKL(p, q) if q takes the value 0, as q is in
the denominator, we get Inf.

As DKL, DH and DV are all sum of positive terms, we should normalize them so that they do not
depend on the number of samples of the empirical distributions.

We carried out several experiments in order to observe how f -divergences evolve with the parame-
ters of the distributions. For the empirical estimation, we focused on the f -divergences of normal,
exponential and uniform distributions. Note that after normalization, the number of samples does
not have a relevant influence. The samples were always one-dimensional.

The empirical results for the normalized Kullback-Leibler divergence DnKL are grouped in table
III.1. When the difference between the parameters increases, DnKL increases.

distribution P distributionQ difference between the pa-
rameters∆

R2 of the linear regression of
DnKL ∝∆

N (µp ,σp ) N (µq ,σq ) (µq −µp )2 1
N (µp ,σp ) N (µq ,σq )

p
σq −σp 0.991

E (λp ) E (λq ) λq −λp no model
U ([a, a +h]) U ([r,r +h]) r −a 1

Table III.1: Synthesis of the simulations on the normalized Kullback-Leibler divergence DnKL of two
distributions P andQ: evolution of DnKL according to the difference between the parameters of P
andQ.

For the normalized Hellinger distance DnH and the normalized variational distance DnV, there is no
trivial model that seems to work. We can not say that, when the difference between the parameters
increases, the distance increases. Hence, from the point of view of the modelling, DnKL seems more
convenient.
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Chapter IV

Application of IPMs and f-divergences to the
Choquet integral

In this chapter, we address the end goal of this project: to compare two empirical probability
distributions obtained from two different methods for computing the Choquet integral. There are
two different methods for computing the Choquet integral that are detailed in paper [Petot et al.,
2018]: we will refer to them as the direct method and the method with the new formula introduced
in paper [Petot et al., 2018].

Actually, we try to prove (experimentally) that the new formula given in the paper [Petot et al., 2018]
is correct by comparing its output samples to the direct method’s output samples, as the direct
method is proven to be correct. If the "distance" between these samples is "small", we can say
that the new formula gives "similar" results than the direct method, thus that the new formula is
"correct".

Hence, we are going to use two main different measures for comparing the samples from the two
methods: integral probability metrics introduced in chapter II and f -divergences introduced in
chapter III. The Choquet integral operator was introduced in chapter I.

We will not focus on how these methods for computing the Choquet integral work: we will only see
them as input data for our IPMs and f -divergences.

Let us take the example of comparing the two methods for computing the Choquet integral of
normal distributions. The Choquet integral takes as input some normal distributions Ni n and
outputs a distribution. For the Choquet integral computed with the direct method, this output is
notedP. For the Choquet integral computed with the new formula, this output is notedQ. Note that,
as the Choquet integral is a non-linear aggregation operator, P and Q are (empirical) distributions
that have no reason to be normal distributions as their corresponding input Ni n . Now, we compute
the (empirical) Kantorovich metric W (P,Q): if it is "small", we claim that P is "close" to Q, thus that
the new formula is correct. We also compute the f -divergences.

Contrary to the previous ones, this chapter will not deal with uniform distributions, as we have no
available data about the Choquet integral of uniform distributions. We will only address normal
and exponential distributions.
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IV.1 For the Choquet integral of normal distributions

As introduced in the beginning of this chapter, we are going to compare two (empirical) distributions
P andQ, both outputs of the Choquet integral of normal distributions.

IV.1.1 Presenting the data

For computing IPMs, we need the samples Xp and Xq drawn from P andQ. These samples are given
figure IV.1, but in the form of histograms (and their estimated empirical probability distribution).

Figure IV.1: Data for IPMs: Histograms of the samples from two methods for computing the Choquet
integral of normal distributions

P and Q look like normal distributions but are not. Indeed, we performed D’Agostino and Pearson’s
test using SciPy, the null hypothesis being that the samples come from a normal distribution. For
Xp , we obtained a pvalue of 10−26. For Xq , we obtained a pvalue of 10−28. Thus we can (strongly)
reject the null hypothesis in both cases.

For computing f -divergences, we need the probability distributions, given figure IV.2. Each distri-
bution has 61 samples.

IV.1.2 IPMs: Kantorovich metric

Because of the memory issue, we can only select (randomly) 100 samples per distribution: X ′
p and

X ′
q then compute W (X ′

p , X ′
q ).

Hence, we perform ten random samplings of 100 samples per distribution, compute the Kantorovich
metric of each pair of distributions. The mean of the ten Kantorovich metrics is W = 0.894 and the
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Figure IV.2: Data for f -divergences: empirical distributions from two methods for computing the
Choquet integral of normal distributions

standard deviation is 0.033.

By comparing W = 0.894 to the values from the simulations of subsection II.4.1, we claim that
W = 0.894 is a "very small" value, thus that the two distributions are "very close". Hence, from an
empirical point of view, the new formula of paper [Petot et al., 2018] seems to be correct.

IV.1.3 f-divergences

The results are displayed in table IV.1. Note that we have a problem with the normalized KL
divergence because we must divide by 0.

Normalized Kullback-Leibler divergence DnKL Inf
Normalized Hellinger distance DnH 5.179×10−4

Normalized variational distance DnV 1.381×10−2

Table IV.1: f -divergences

By comparing the results of table IV.1 (except DnKL) to the simulations of subsections III.2.1, III.3.1
and III.4.1, we claim that these f -divergences are "very small" values, thus that the two distributions
are "very close". Hence, from an empirical point of view, the new formula of paper [Petot et al.,
2018] seems to be correct.
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IV.2 For the Choquet integral of exponential distributions

We are going to compare two (empirical) distributionsP andQ, both outputs of the Choquet integral
of exponential distributions.

IV.2.1 Presenting the data

For computing IPMs, we need the samples Xp and Xq drawn from P andQ. These samples are given
figure IV.3, but in the form of histograms (and their estimated empirical probability distribution).

Figure IV.3: Data for IPMs: Histograms of the samples from two methods for computing the Choquet
integral of exponential distributions

For computing f -divergences, we need the probability distributions, given figure IV.4. Each distri-
bution has 51 samples.

IV.2.2 IPMs: Kantorovich metric

Because of the memory issue, we can only select (randomly) 100 samples per distribution: X ′
p and

X ′
q then compute W (X ′

p , X ′
q ).

Hence, we perform ten random samplings of 100 samples per distribution, compute the Kantorovich
metric of each pair of distributions. The mean of the ten Kantorovich metrics is W = 0.776 and the
standard deviation is 0.051.

By comparing W = 0.776 to the values from the simulations of subsection II.4.2, we claim that
W = 0.776 is a "very small" value, thus that the two distributions are "very close". Hence, from an
empirical point of view, the new formula of paper [Petot et al., 2018] seems to be correct.
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Figure IV.4: Data for f -divergences: empirical distributions from two methods for computing the
Choquet integral of exponential distributions

IV.2.3 f-divergences

The results are displayed in table IV.2. Note that we have a problem with the normalized KL
divergence because we must divide by 0.

Normalized Kullback-Leibler divergence DnKL Inf
Normalized Hellinger distance DnH 4.391×10−3

Normalized variational distance DnV 2.295×10−2

Table IV.2: f -divergences

By comparing the results of table IV.2 (except DnKL) to the simulations of subsections III.2.2, III.3.2
and III.4.2, we claim that these f -divergences are "very small" values, thus that the two distributions
are "very close". Hence, from an empirical point of view, the new formula of paper [Petot et al.,
2018] seems to be correct.
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Conclusion

Recapitulation

In this report, we studied several measures to compare two empirical probability distributions. Two
categories of measures were addressed: integral probability metrics (IPMs) and f -divergences.

Let us recall that we wrote two intermediate conclusions on integral probability metrics (IPMs) at
section II.5 and on f -divergences at section III.5.

For IPMs γF , each choice of F leads to a specific IPM. For the numerical computation, we only
dealt with the most popular IPM: the Kantorovich metric W .

For f -divergences, each choice of f leads to a specific f -divergence. We focused on the most
popular f -divergences: the Kullback-Leibler divergence DKL, the Hellinger distance DH and the
Varational distance DH.

For both IPMs and f -divergences, we have carried out several experiments in order to observe how
these measures evolve with the parameters of the distributions. For each measure, we analyzed the
results on three common distributions: normal, exponential and uniform.

For the numerical computation of W , we need to solve a linear programming problem, which
causes memory issues, thus we need the number of samples of the inputs to be "small" (inferior to
1 000). We used the PuLP library to solve the linear programming problem. The empirical results
showed that W is a distance: when the difference between the parameters of the distributions
increases, W increases. For each distribution, we can model W according to the difference between
the parameters (of the distribution) and the model is trivial, thus relevant.

On the other hand, the numerical computation of f -divergences is very direct and effective: there
are no memory issues. Their explicit formula can be "translated" into an algorithm with one line of
code. We need to normalize these measures. The empirical results showed that DKL is a "distance"
(though it is not symmetric): when the difference of the parameters of the distributions increases,
W increases; and the model is trivial. For DH and DV, no trivial model can be applied. However,
DKL does not deal well with empirical distributions that take the value 0.

Each "distance" being a compromise, there is no "distance" that appears to be better than the
others: each "distance" has its advantages and drawbacks.

We applied IPMs and f -divergences to compare the output samples from the direct method for
computing the Choquet integral – to the ones obtained with the new formula of paper [Petot et al.,
2018]. By comparing to the "benchmark" of simulations in chapters II and III, we claimed that the
distances were "very small", thus that the new formula of paper [Petot et al., 2018] seems to be
correct (from an empirical point of view).

53



Further work

One could try to do more explicit (theoretical) computations of IPMs and f -divergences: we only
did an explicit computation of the Kantorovich metric W for uniform distributions at subsection
II.1.3. Hence, we could try to relate the distances to the parameters of the distributions in a more
formal way.

One could also look into the empirical estimation of the Dudley metric β, an IPM introduced in
chapter II, that requires solving a linear programming problem.

From a numerical point of view, one could try to address the issue of dividing by 0 in the computation
of DKL (without forgetting the normalization issue).

Furthermore, one could try to implement the solving of the linear programming problem in the
computation of W in a more efficient way, so that the inputs could have more samples. Sparse
matrices seem promising for example but they could not be implemented in the PuLP library.
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Appendix A

Numerical computation of the Choquet
integral of a vector

In this appendix, we are going to explain how to define a MATLAB function that returns the Choquet
integral given a capacity µ and an input vector x.

In our example, the capacity µ is stored into capa3.mat with the variable name Capa. Section A.1
explains how we stored a capacity into a vector. For example, from an algorithmic point of view,
how do we encode µ ([{1,2}]) = 0.3651?

A.1 How can we numerically store the values of a capacity?

We assume that the values of our capacity are already stored in the MATLAB file capa3.mat and
we are going to explain how they were stored. capa3.mat is a vector of length 8, as is shown in the
following MATLAB script:

1 >> load (’capa3 . mat ’)
2

3 >> size ( Capa )
4 ans =
5 1 8
6

7 >> Capa
8 Capa =
9 0 0.0999 0.2538 0.3651 0.0118 0.6651

0.4383 1.0000

capa3.mat represents a capacity µ with log2(8) = 3 criteria. (Indeed, 23 = 8.) The values of µ are
given in table A.1. The capacity index is just the MATLAB index of the vector (that starts with 1 in
MATLAB). We introduce what we call the decimal index, that is the capacity index shifted so the
index start at 0. We will understand in the next paragraphs why we prefer using the decimal index
rather than the capacity index.

To which set do the capacity index correspond to? For example, as shown in table A.1, for a capacity
index of 4, we have a capacity value of 0.3651, but to which set does the capacity value 0.3651
correspond to?

We encode a set into a decimal index is which then encoded into a capacity index (with a simple
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capacity index 1 2 3 4 5 6 7 8
decimal index 0 1 2 3 4 5 6 7
capacity value 0 0.0999 0.2538 0.3651 0.0118 0.6651 0.4383 1

Table A.1: Values taken by the capacity capa3.mat

shift as shown in table A.1). Table A.2 explains how we can relate the (capacity) index of capa3.mat
to their corresponding set (or node).

We obtain the binary encoding from the set: we put a 1 if the number (corresponding to the column)
appears in the set and 0 otherwise. For example, the set {1,2} contains the numbers 1 and 2, so that
for the binary encoding, we put a value of one in the column corresponding to 1 and 2: 0112.

We obtain the decimal encoding from the binary encoding in the usual way. For example, 0112 =(
0×22 +1×21 +1×20

)
10

= 310 so we get a 3 for the decimal encoding of 0112.

set binary encoding decimal encoding
(or node) 3 2 1 (or decimal index)

{∅} 0 0 0 0×22 +0×21 +0×20 = 0
{1} 0 0 1 0×22 +0×21 +1×20 = 1
{2} 0 1 0 0×22 +1×21 +0×20 = 2

{1,2} 0 1 1 0×22 +1×21 +1×20 = 3
{3} 1 0 0 1×22 +0×21 +0×20 = 4

{1,3} 1 0 1 1×22 +0×21 +1×20 = 5
{2,3} 1 1 0 1×22 +1×21 +0×20 = 6

{1,2,3} 1 1 1 1×22 +1×21 +1×20 = 7

Table A.2: Correspondence between sets, their binary encoding and their decimal encoding

Now, we can now join table A.1 with table A.2 on the decimal index to obtain table A.3. Table A.3
gives the value of the capacity for a given set (or node). For example, set {1,2} has a decimal index
of 3 according to table A.2 and the decimal index of 3 corresponds to a capacity value of 0.3651
according to table A.1, so set {1,2} has a capacity value of 0.3651.

set capacity value
{∅} 0
{1} 0.0999
{2} 0.2538

{1,2} 0.3651
{3} 0.0118

{1,3} 0.6651
{2,3} 0.4383

{1,2,3} 1

Table A.3: Capacity values of each set

Finally, we represent A.3 as a graph in table A.4. Each node in the graph corresponds to a set and to
each set corresponds a capacity value. For example, {1,2}0.3651 means that set {1,2} has a capacity
value of 0.3651.
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{1,2,3}1{1,2,3}1{1,2,3}1

{1,2}0.3651 {1,3}0.6651{1,3}0.6651{1,3}0.6651 {2,3}0.4383

{1}0.0999 {2}0.2538 {3}0.0118{3}0.0118{3}0.0118

∅0∅0∅0

Table A.4: Graph of sets with their capacity values

A.2 Computing by hand the Choquet integral with an encoded ca-
pacity

In this section, in order to understand how a MATLAB function for computing the Choquet integral
should work, we compute a Choquet integral for a given x and capacity capa3.mat from section
A.1 by hand.

Hence, we can check if the MATLAB function written in section A.4 returns the same and exact
value.

Suppose that we have:

x =

x1

x2

x3

 =

0.25
0.12
0.7


thus having x2 É x1 É x3 and σ(1) = 2,σ(2) = 1,σ(3) = 3. The path in the graph taken by our Choquet
integral is in bold in table A.4.

For the capacity, we take the capacity capa3.mat given in table A.4:

µ =



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8


=



0
0.0999
0.2538
0.3651
0.0118
0.6651
0.4383

1


According to formula (I.5) and table A.4, let us compute the Choquet integral of x with respect to µ:

Cµ(x1, x2, x3) = x2
(
µ[{2,1,3}]−µ[{1,3}]

)
+x1

(
µ[{1,3}]−µ[{3}]

)
+x3

(
µ[{3}]−µ[∅]

)
= 0.12(1−0.6651])

+0.25(0.6651−0.0118)

+0.7(0.0118−0)

= 0.2118

Note that when computing the Choquet integral manually, we can directly move to the penultimate
line (the second to last line) in the equations above by following the path on the graph on table A.4.
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A.3 Getting the capacity index from the iteration on a specific
path

In this section, we explain a trick we will use in our MATLAB function for computing the Choquet
integral. We are going to give a way to get the capacity index of the nodes that belong to the path of
our Choquet integral. Indeed, in practice, we do not need to get the capacity values of all our nodes,
but only those that belong to the specific path.

We introduce the permutation τ ∈Sn such that:

xτ(1) Ê xτ(2) Ê . . . Ê xτ(n) (A.1)

We take the same values for x and µ as in subsection A.2. We have τ(1) = 3,τ(2) = 1,τ(3) = 2.

Note that τ is different from the permutation σ introduced in formula (I.3).

Let c be the vector containing the capacity indexes of the nodes in our specific path. Note that c is
the vector whose values we want to compute with a trick. We have:

c =

c1

c2

c3


where c1 is capacity index corresponding to the set {τ(1)}, c2 to {τ(1),τ(2)} and c3 to {τ(1),τ(2),τ(3)}.

Actually, c1 is the capacity index of the first node of our path (after node {∅}), c2 the capacity index
of second node in our path and c3 the capacity index of the third node in our path. Actually, i ∈ J1,3K
corresponds to a step in the path.

Here, we have {τ(1)} = {3}, {τ(1),τ(2)} = {2,1}, {τ(1),τ(2),τ(3)} = {2,1,3}. Thus, according to table A.2,
we have:

c =

5
6
8


Can we get a formula for computing the values of c? Yes. We must take a closer look at table A.2.
We note that the capacity index of the set {2} is 22−1 +1 = 3, the capacity index of the set {1,2} is
21−1 +22−1 +1 = 4, the capacity index of the set {3,2} is 23−1 +22−1 +1 = 7, the capacity index of the
set {1,2,3} is 21−1 +22−1 +23−1 +1 = 8, and so on. Thus, we have:

∀i ∈ J1,3K ci = 1+ ∑
j∈τ(1:i )

2τ( j )−1 (A.2)

For verification, according to (A.2), we have:

c1 = 1+2τ(1)−1 = 1+23−1 = 5

c2 = 1+2τ(1)−1 +2τ(2)−1 = 1+23−1 +21−1 = 6

c3 = 1+2τ(1)−1 +2τ(2)−1 +2τ(3)−1 = 1+23−1 +21−1 +22−1 = 8

which is correct.
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A.4 MATLAB function returning the Choquet integral

Taking into account the previous sections, we can now define a MATLAB function returning the
Choquet integral for a given input vector x and a given capacity µ.

For the Choquet integral, we use formula (I.6) but instead of σ, we take τ as defined in (A.1). Thus,
we have:

Cµ(x) =
n∑

i =1

(
xτ(i ) −xτ(i+1)

)
µ[τ(i : n)] (A.3)

The MATLAB code for computing the Choquet integral I received from Alexandre Voisin is the
following:

1 function OUT =CI(mu ,IN)
2

3 n= size (IN ,1) ;
4 NCrit = size (IN ,2) ;
5 [Xv Xi ]= sort (IN ,2 , ’ descend ’);
6 OUT = zeros (n ,1) ;
7

8 % calcul des indices des mus associ ? aux sous ensemble de crit ? rea i
.e.

9 %c (1) −−> x (1)
10 %c (2) −−> {x (1) ,x (2) }
11 %c (3) −−> {x (1) ,x (2) ,x (3) }...
12 if size (IN ,1) ==1 % cas o? l’on a une seule valeur ? calculer
13 c= cumsum (2.^( Xi −1)) +1;
14

15 for j =1: NCrit −1
16 OUT = OUT +( Xv (: ,j)−Xv (: ,j +1) ).∗ mu(c(j));
17 end
18 OUT = OUT +Xv( NCrit ).∗ mu(c( NCrit ));
19

20 else
21 c= cumsum (2.^( Xi −1) ,2) +1; % cas o? l’ ion a un ensemble de valeurs

? calculer
22

23 for j =1: NCrit −1
24 OUT = OUT +( Xv (: ,j)−Xv (: ,j +1) ).∗ mu(c(: ,j)) ’;
25 end
26 OUT = OUT +Xv (: , NCrit ).∗ mu(c(: , NCrit )) ’;
27 end
28 end

I changed it into:

1 function [CI] = choquet_integral (mu , X)
2 % Computes the ( discrete ) Choquet integral of a vector .
3 % Parameters
4 % mu : capacity
5 % X : input values
6 % Returns
7 % CI : Choquet integral of each input value
8

9 n = size (X ,1) ; % number of input values , number of vectors
10 p = size (X ,2) ; % number of criteria
11 CI = zeros (n ,1) ; % Choquet integral
12
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13 % We do the permutation :
14 [ X_tau , tau ] = sort (X, 2, ’ descend ’) ; % and not ascent ??
15

16 % We compute the vector containing the capacity index of our path :
17 c = cumsum (2.^( tau −1) ,2) +1 ;
18

19 % We compute the Choquet integral :
20 for j =1:p−1
21 CI = CI + ( X_tau (: ,j)−X_tau (: ,j +1) ).∗ mu(c(: ,j))’ ;
22 end
23 CI = CI + X_tau (: ,p).∗ mu(c(: ,p))’ ;
24

25 end

Running the following script:

1 % Loading the capacity
2 load (’capa3 . mat ’) % has the variable name Capa
3

4 X = [0.25 , 0.12 , 0.7] ; % input values
5 mu = Capa ; % capacity
6 choquet_integral (mu , X)
7

8 % Computation by hand :
9 res = 0.12∗(1 −0.6651) + 0.25∗(0.6651 −0.0118) + 0.7∗(0.0118 −0)

gives us:

1 ans =
2 0.2118
3

4 res =
5 0.2118

Thus, our MATLAB function choquet_integral returns the same result as the computation by
hand of section A.2. We have defined a function that can compute the Choquet integral.
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