Introduction

Why use symbolic representations of time series?

- Need for an actionable representation that takes into account the temporal information.
- Used in many data mining tasks: classification, clustering, indexing, anomaly detection, etc.
- 2 main advantages over other representations:
- Reduced memory usage.
- Often a better score on data mining tasks thanks to the smoothing effect induced by compression.

2 main steps for symbolic representations

- Segmentation step: a real-valued signal of length n is split into w segments (w < n).
- Quantization step: each segment is mapped to a discrete value taken from a set of A symbols. Example of set of symbols with A = 5: $\{a, b, c, d, e\}.$

Related work

Table 1:Summary of some popular symbolic representations.

Method	Segmentation	Feature extraction	Quantization
SAX [2] (2003)	uniform	mean	Gaussian bins
1d-SAX (2013)	uniform	mean, slope	Gaussian bins
\mathbf{CSAX} (2020)	uniform	mean, complexity estimate	Gaussian bins

Figure 1:Example of a SAX (top) and our method ASTRIDE (bottom) representations of a signal. The resulting symbolic sequence is 1131 for SAX, and 1230 for ASTRIDE. SAX can not take into account the peaks.

Symbolic representation for time series

Sylvain W. Combettes, Charles Truong, and Laurent Oudre

Université Paris-Saclay, Université Paris Cité, ENS Paris-Saclay, CNRS, SSA, INSERM, Centre Borelli

Our method: ASTRIDE

ASTRIDE (Adaptive Symbolization for Time seRIes DatabasEs): adaptive symbolic representation for a data set of N univariate time series of length n, with a compatible distance measure.

Steps of ASTRIDE

- **1**Segmentation: change-point detection (on the mean) with a fixed number of change-points (w-1), where w is the desired number of segments.
- **2** Quantization: quantiles, leading to A bins.
- 3 Distance: general edit distance between the resulting symbolic signals.

Change-point detection

ASTRIDE

- All N signals are stacked, producing a single multivariate signal of length n and dimension N.
- ASTRIDE applies multivariate change-points detection with a fixed number of segments (w) on this high-dimensional signal.
- Finding the w-1 instants $t_1^* < t_2^* < \ldots < t_{w-1}^*$ where the mean of signal $y = (y_1, \ldots, y_n)$ change abruptly:

$$(\hat{t}_1, \dots, \hat{t}_{w-1}) = \operatorname*{arg\,min}_{(w, t_1, \dots, t_{w-1})} \sum_{\substack{k=0 \ t=t_k}}^{w+1} \|y_t - \bar{y}_{t_k:t_{k+1}}\|^2,$$

where $\bar{y}_{t_k:t_{k+1}}$ is the empirical mean of $\{y_{t_k}, \ldots, y_{t_{k+1}-1}\}$.

Experimental results (I)

 ASTRIDE is compared to SAX, 1d-SAX, and CSAX on One-Nearest Neighbor (1-NN) classification, with the test accuracy, for A = 9. Evaluated on 86 univariate time series data sets 	4 L 1d-SAX <u>3.08</u> SAX <u>2.88</u>		
with equal length sourced from the UCR Time	Л		
Series Classification Archive.			
Table 2:Normalized space complexities (nsc) for each symbolization method, with $r = 64$ bits the number of bits to			
store a real value.	Д		
Method Normalized space complexity	۲ L 1d-SAX <u>3.0</u> ٤		
SAX $\frac{w \lceil \log_2(A) \rceil}{n}$	SAX 2.97		
1d-SAX $\frac{w \lceil \log_2(A) \rceil}{m}$	Figure 2:		
CSAX $\frac{w(\lceil \log_2(A) \rceil + r)}{n}$	difference		
$\Delta \text{STRIDE} \qquad \frac{w(N \lceil \log_2^{\prime\prime}(A) \rceil + r)}{w(N \lceil \log_2^{\prime\prime}(A) \rceil + r)}$	age over		

- Reducing the error between the original signal and the best piecewise constant approximation. • Solved using dynamic programming. Time complexity: $\mathcal{O}(Nwn^2)$. Levering the general edit distance • Preprocessing. • Including the segment length information: replicating each symbol proportionally to its segment length. Example: abd becomes aabbbbdd. • Shortening: dividing each length by the minimum length. Example: aabbbbdd becomes abbd. • Applying the general edit distance with custom costs. • Edit distance on strings (a.k.a Levenshtein distance): minimal cost of a sequence of operations that transform a string into another. • Allowed simple operations and their costs: • Substitution: Euclidean distance between the average of all the means corresponding to each symbol.
 - Insertion: max of substitution costs.
 - Deletion: max of substitution costs.
- Total cost: sum of the costs of the simple operations.

:Critical difference diagrams showing the pairwise statistical e comparison. ASTRIDE is the best symbolization on average over the considered datasets.

Table 3: Processing times on the symbolization and 1-NN classification on the ECG200 data set composed of 100 training signals and 100 test signals of length n = 96, with w = 10 and A=9.

Experimental results (II)

Figure 3:Example of symbolization of a single signal from the Beef data set (UCR archive) of length n = 470 for several methods, with A = 9 and nsc = 0.8.

Method	Symbolization (s)	1-NN classification (s)
SAX	0.02	0.11
1d-SAX	0.41	0.21
CSAX	0.58	0.25
ASTRIDE	0.29	0.17

Conclusion

Follow-up paper on adaptive symbolic for a dataset of multivariate time series: d_{symb} method and the d_{symb} playground [1] (Streamlit app).

References

dsymb playground: An interactive tool to explore large multivariate time series datasets.

Sylvain.combettes8@gmail.com Shttps://sylvaincom.github.io

^[1] S. W. Combettes, P. Boniol, C. Truong, and L. Oudre.

In 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024.

^[2] J. Lin, E. Keogh, S. Lonardi, and B. Chiu.

A symbolic representation of time series, with implications for streaming algorithms.

In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003.