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Introduction

Why use symbolic representations of time
series?
• Need for an actionable representation that takes

into account the temporal information.
• Used in many data mining tasks: classification,

clustering, indexing, anomaly detection, etc.
• 2 main advantages over other representations:

• Reduced memory usage.
• Often a better score on data mining tasks thanks to the

smoothing effect induced by compression.

2 main steps for symbolic representations
1 Segmentation step: a real-valued signal of length
n is split into w segments (w < n).

2 Quantization step: each segment is mapped to a
discrete value taken from a set of A symbols.
Example of set of symbols with A = 5:
{a, b, c, d, e}.

Related work
Table 1:Summary of some popular symbolic representations.

Method Segmentation Feature extraction Quantization
SAX [2] (2003) uniform mean Gaussian bins
1d-SAX (2013) uniform mean, slope Gaussian bins
CSAX (2020) uniform mean, complexity estimate Gaussian bins
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Figure 1:Example of a SAX (top) and our method ASTRIDE
(bottom) representations of a signal. The resulting symbolic
sequence is 1131 for SAX, and 1230 for ASTRIDE. SAX can
not take into account the peaks.

Our method: ASTRIDE

ASTRIDE (Adaptive Symbolization for Time seRIes
DatabasEs): adaptive symbolic representation for a data
set of N univariate time series of length n, with a compat-
ible distance measure.
Steps of ASTRIDE
1 Segmentation: change-point detection (on the mean)
with a fixed number of change-points (w − 1), where w
is the desired number of segments.

2 Quantization: quantiles, leading to A bins.
3 Distance: general edit distance between the resulting
symbolic signals.

Change-point detection
• All N signals are stacked, producing a single

multivariate signal of length n and dimension N .
• ASTRIDE applies multivariate change-points detection

with a fixed number of segments (w) on this
high-dimensional signal.

• Finding the w − 1 instants t∗
1 < t∗

2 < . . . < t∗
w−1 where

the mean of signal y = (y1, . . . , yn) change abruptly:
t̂1, . . . , t̂w−1

 = arg min
(w,t1,...,tw−1)

w+1∑
k=0

tk+1−1∑
t=tk

∥yt − ȳtk:tk+1∥2,

where ȳtk:tk+1 is the empirical mean of {ytk
, . . . , ytk+1−1}.

• Reducing the error between the original signal
and the best piecewise constant
approximation.

• Solved using dynamic programming. Time
complexity: O (Nwn2).

Levering the general edit distance
1 Preprocessing.

• Including the segment length information: replicating
each symbol proportionally to its segment length.
Example: abd becomes aabbbbdd.

• Shortening: dividing each length by the minimum
length.
Example: aabbbbdd becomes abbd.

2 Applying the general edit distance with
custom costs.
• Edit distance on strings (a.k.a Levenshtein distance):

minimal cost of a sequence of operations that
transform a string into another.

• Allowed simple operations and their costs:
• Substitution: Euclidean distance between the average of all

the means corresponding to each symbol.
• Insertion: max of substitution costs.
• Deletion: max of substitution costs.

• Total cost: sum of the costs of the simple operations.

Experimental results (I)

• ASTRIDE is compared to SAX, 1d-SAX, and
CSAX on One-Nearest Neighbor (1-NN)
classification, with the test accurary, for A = 9.

• Evaluated on 86 univariate time series data sets
with equal length sourced from the UCR Time
Series Classification Archive.

Table 2:Normalized space complexities (nsc) for each sym-
bolization method, with r = 64 bits the number of bits to
store a real value.

Method Normalized space complexity

SAX w⌈log2(A)⌉
n

1d-SAX w⌈log2(A)⌉
n

CSAX w(⌈log2(A)⌉ + r)
n

ASTRIDE w(N⌈log2(A)⌉ + r)
Nn

1234

3.05231d-SAX
2.8895SAX 2.6628 CSAX

1.3953 ASTRIDE

Normalized space complexity: 0.9. Alphabet size: 9.

1234

3.08721d-SAX
2.8488SAX 2.5000 CSAX

1.5640 ASTRIDE

Normalized space complexity: 1.0. Alphabet size: 9.

1234

3.05811d-SAX
2.9709SAX 2.4186 CSAX

1.5523 ASTRIDE

Normalized space complexity: 1.1. Alphabet size: 9.

Figure 2:Critical difference diagrams showing the pairwise statistical
difference comparison. ASTRIDE is the best symbolization on aver-
age over the considered datasets.

Experimental results (II)
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Figure 3:Example of symbolization of a single signal from the
Beef data set (UCR archive) of length n = 470 for several
methods, with A = 9 and nsc = 0.8.

Table 3:Processing times on the symbolization and 1-NN clas-
sification on the ECG200 data set composed of 100 training
signals and 100 test signals of length n = 96, with w = 10 and
A = 9.

Method Symbolization (s) 1-NN classification (s)

SAX 0.02 0.11
1d-SAX 0.41 0.21
CSAX 0.58 0.25
ASTRIDE 0.29 0.17

Conclusion

Follow-up paper on adaptive symbolic for a dataset
of multivariate time series: dsymb method and the
dsymb playground [1] (Streamlit app).
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