d_{symb} playground: an interactive tool to explore large multivariate time series datasets

Sylvain W. Combettes, Paul Boniol, Charles Truong, Laurent Oudre

Université Paris-Saclay, Université Paris Cité, ENS Paris-Saclay, CNRS, SSA, INSERM, Centre Borelli, Inria, ENS

Motivation

- Sensors are increasingly used in various fields. These signals can be multivariate and non-stationary [1].
- Symbolization transforms a real-valued signal of length n into a discrete-valued signal of smaller length w < n, called a symbolic sequence.
- Popular distances such as the Euclidean distance and Dynamic Time Warping can not handle non-stationary time series [2].

d_{symb} Playground

Stand-alone webapp developed using Streamlit proposing three main features:

- 1. Visualizing uploaded time series and their symbolizations
- 2. Comparing time series based on their symbolizations
- **Benchmarking** distance measures 3.

Input/Features summary

*d*_{symb} symbolization and distance measure

Symbolization and distance measure for multivariate *time series [2]. d*_{symb} requires one parameter (the number of symbols A) and is composed of three steps:

(1) Segmentation	(2) Quantization	(3) Distance	
Change-point detection (on the mean).	K-means clustering (of the means per segment).	General edit distance between the symbolic representations	
Parameter λ ($\lambda = \ln(n)$ by default) to control the number of change-points.	We set the number of clusters <i>K</i> to the desired number of symbols <i>A</i> .	with custom costs: Substitution: Euclidean distance between the centroids	
Solved with PELT algorithm [3] with $O(n)$ complexity.	Replication of each symbol proportionally to its segment length.	of the symbols Insertion/Deletion: max of substitution costs	

$\left(\right)$	Individual analysis	Dataset analysis	
	Mode		
	Colorbars		 Distance matri

rix		

Symbol

4

Welcome to the d_{symb} playground!

 $a_{symb} \neq a_{symb}$ Swiftly interpret and compare your multivariate time series dataset using d_{symb} . d_{symb} transforms a multivariate time series into an interpretable symbolic sequence, and comes with an efficient distance measure defined on the obtained symbolic sequences.

Explore	Benchmark	About	
Benchmark d_{symb} distance			
Choose a	distance meas	ure to investigate:	

Visualize all the symbolized time series Visualize the distance matrix based on d_{sumb} .

Length

True

Use the true time series' lengths.

O Normalized Normalize the lengths between 0 and 1.

Overview of your symbolized dataset

Colorbars of all symbolic sequences in the dataset

DTW dependent

Parwise distance matrix between time series using DTW dependent

V

(A) Dataset analysis frame

(B) Individual analysis frame

(C) Benchmark frame

Bibliography

[1] Sylvain W. Combettes, Paul Boniol, Antoine Mazarguil, Danping Wang, Diego Vaquero-Ramos, Marion Chauveau, Laurent Oudre, Nicolas Vayatis, Pierre-Paul Vidal, Alexandra Roren, and Marie-Martine Lefèvre-Colau, Arm-CODA: A Data Set of Upper-limb Human Movement During Routine Examination, Image Processing On Line, 14 (2024), pp. 1–13.

[2] S. W. Combettes, C. Truong, and L. Oudre. An interpretable distance measure for multivariate non-stationary physiological signals. In Proceedings of the International Conference on Data Mining (AI4TS Workshop), 2023.

[3] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500):1590-1598, 2012

