Symbolic representations for time series PhD defense

Sylvain W. Combettes

Supervisors: Laurent Oudre and Charles Truong

January 8th, 2024

 \sim

 QQ

 (0.12×10^{-11})

1 – Introduction

1. [Introduction](#page-1-0)

1.1 [Context](#page-2-0)

- 1.2 [Scientific questions and challenges](#page-5-0)
- 1.3 [Our goals and our approach](#page-6-0)

2. [Background and related work](#page-7-0)

- 3. [ASTRIDE: for univariate time series](#page-21-0)
- 4. [d_symb: for multivariate time series](#page-37-0)
-

 QQ

イロトイ部トイ君トイ君ト

Context Centre Borelli

Evologing the arm-CODA data forus on movement 0 of subject #0 and sensor #16

Figure: armCODA data set.

- ▶ Neuroscience projects: often combining mathematicians with medical doctors and clinicians.
- \blacktriangleright Analysis of human behavior
	- 1. **Longitudinal follow-up**: studying the evolution of a subject over time.
	- 2. **Inter-individual comparison**:

comparing two cohorts of subjects.

- \blacktriangleright Creation of data sets of physiological signals from protocols
	- armCODA data set [\[1\]](#page-51-0): study of arm movements
	- gait data set [\[9\]](#page-53-1): study of human locomotion

イロメ イ母メ イヨメ イヨメ

 Ω

Context Use case #1: armCODA data set [\[1\]](#page-51-0)

- ▶ Goal: study of upper-limb movements during rehabilitation after injury
- ▶ 34 CODA sensors (Cartesian Optoelectronic Dynamic Anthropometer), recording the 3D position, placed on the upper limb of 16 patients
	- ▶ Protocol: patients performing 15 movements
		- raising their arms
		- combing their hair
		- ▶ ...
- ➥ 240 multivariate signals with **102 dimensions**

イロメ イ押メ イヨメイヨメ

つへへ

Context Use case #2: gait data set [\[9\]](#page-53-1)

- Goal: study of human locomotion for early detection of fall risk
- Sensors: angular velocity recorded on the left and right feet using a pair of sensors.
- Protocol: standing, walking, turning around, walking back, and standing.
- ▶ Preprocessing: norms of the STFT (Short Time Fourier Transform) of each foot recording (univariate signal)

 \rightarrow \rightarrow \rightarrow

➥ 442 multivariate signals with **16 dimensions**

 Ω

Scientific questions and challenges

\blacktriangleright Scientific questions

- 1. How to **represent** physiological signals with a complex structure?
- 2. How can we define a **distance** between them?
- \blacktriangleright Challenges
	- \blacktriangleright temporal information: retain the chronology of actions
	- ▶ noise
	- ▶ multivariate/multimodal: many dimensions (e.g. 102), possibly correlated
	- \blacktriangleright non-stationary: statistical properties of the signals change over time
	- ▶ computational cost
	- \blacktriangleright interpretability for clinicians

 Ω

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ...

Our goals and our approach

- ▶ Our goals when representing and comparing complex physiological signals
	- Adapt to the phenomena of interest.
	- ▶ Perform the comparison at the level of "actions".
	- Be fast to compute (almost interactive).
	- Allow longitudinal follow-up and inter-individual comparison.
- Our approach
	- 1. Symbolization: transforming a real-valued series into a shorter discrete-valued series.

Figure: Example of symbolization.

2. Applying a distance measure on the resulting string[s.](#page-5-0)

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) Symbolic representations for time series Symbolic representations for time series January 8th, 2024 6 / 39

[Background and related work](#page-7-0)

2 – Background and related work

1. [Introduction](#page-1-0)

2. [Background and related work](#page-7-0)

- 2.1 [Symbolic representation of time series](#page-9-0)
- 2.2 [Distance measures on series](#page-17-0)
- 3. [ASTRIDE: for univariate time series](#page-21-0)
- 4. [d_symb: for multivariate time series](#page-37-0)
-

 QQ

イロメイタメイモメイモメ

Background and related work

In the manuscript, we have conducted two literature reviews:

- ▶ Chapter II: Symbolic representations for time series. Covers more than 60 symbolization methods.
- ▶ Chapter III: Distance measures on time series, strings, and symbolic sequences.
	- ▶ ^A *time series* is a series of real values indexed in time order.
	- ▶ ^A *string* is a series of discrete values indexed in time order, the discrete values being non-ordered and taken from a fixed alphabet of characters.
	- ▶ A *symbolic sequence* is a discrete sequence resulting from the transformation of a time series using a symbolization process.

Figure: Overview of distance types reviewed in the manuscript.

 299

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$. Indeed, and there are common groun[ds fo](#page-7-0)r [di](#page-9-0)[st](#page-7-0)[anc](#page-8-0)[es](#page-9-0) [o](#page-6-0)n \Box

Symbolic representation of time series Framework

Symbolization of a time series:

- 1. **Segmentation**: a real-valued signal $y = (y_1, \ldots, y_n)$ of length *n* is split into w segments ($w < n$)
- 2. **Feature extraction**: features of interest are extracted for each segment
- 3. **Quantization** (of the real-valued extracted features): each segment is mapped to a discrete value taken from a set $\{ \mathsf{a}, \mathsf{b}, \mathsf{c}, \ldots \}$ of A symbols

$$
\begin{array}{ccc}\n\text{Original} & \longrightarrow & \text{Segmentation} \\
\hline\n\text{temperature} & \text{extraction} & \longrightarrow & \text{Symbolic} \\
\hline\n\text{extraction} & \longrightarrow & \text{Quantization} \\
\end{array}
$$

Figure II.2: Main steps for symbolization of a time series. Figure: Main steps for the symbolization of a time series.

Notations and vocabulary:

- ▶ word length (number of segments): *w*
- ▶ alphabet size (number of symbols): A $\frac{1}{2}$ suppressect in an index or symbols). The distribution of $\frac{1}{2}$
- ▶ alphab[e](#page-20-0)[t](#page-17-0) (a.k.a dictiona[r](#page-7-0)y): $\{a, b, c, \ldots\}$ $\{a, b, c, \ldots\}$ $\{a, b, c, \ldots\}$ or $\{0, 1, 2, \ldots\}$

Sylvain W. Combettes Symbolic representations for time series January 8th, 2024 8 / 39

- 1. Segmentation: uniform, with the word length w
- 2. Feature extraction: mean
- 3. Quantization: Gaussian bins, with alphabet size A

Figure: Example of SAX [\[6\]](#page-52-0) representation of a univariate signal, with $w = 4$ and $A = 4$.

- 1. Segmentation: uniform, with the word length w
- 2. Feature extraction: mean
- 3. Quantization: Gaussian bins, with alphabet size A

Figure: Example of SAX [\[6\]](#page-52-0) representation of a univariate signal, with $w = 4$ and $A = 4$.

റെ ര

- 1. Segmentation: uniform, with the word length w
- 2. Feature extraction: mean
- 3. Quantization: Gaussian bins, with alphabet size A

Figure: Example of SAX [\[6\]](#page-52-0) representation of a univariate signal, with $w = 4$ and $A = 4$.

റെ ര

- 1. Segmentation: uniform, with the word length w
- 2. Feature extraction: mean
- 3. Quantization: Gaussian bins, with alphabet size A

Figure: Example of SAX [\[6\]](#page-52-0) representation of a univariate signal, with $w = 4$ and $A = 4$.

イロメス 何 メスコメス 手

- 1. Segmentation: uniform, with the word length w
- 2. Feature extraction: mean
- 3. Quantization: Gaussian bins, with alphabet size A

Figure: Example of SAX [\[6\]](#page-52-0) representation of a univariate signal, with $w = 4$ and $A = 4$.

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

- 1. Segmentation: uniform, with the word length w
- 2. Feature extraction: mean
- 3. Quantization: Gaussian bins, with alphabet size A

Figure: Example of SAX [\[6\]](#page-52-0) representation of a univariate signal, with $w = 4$ and $A = 4$.

Applications: clustering, classification, query by content, anomaly detection, motif discovery, and visualization.

つくい

イロト イ母 トイラ トイラト

Symbolic representation of time series Some popular methods

▶ Variants of SAX in the literature: modify one or more steps.

Table: Summary of some popular symbolic representations.

 QQ

イロト イ押 トイヨ トイヨト

Distance measures on series On time series

 L_p distance between $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$

$$
L_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}
$$

DTW (Dynamic Time Warping) and variants: robust to time-shifts

Figure: Euclidean distance: one-to-one alignment. Sample x_i is associated with sample y_i .

Figure: DTW distance: one-to-many alignment. Sample x_{i_k} is associated with sample y_{j_k} .

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

 299

Distance measures on series On strings

- ▶ Edit distance on strings: minimal cost of a sequence of operations that transform a string into another.
- ▶ Allowed simple operations:
	- \blacktriangleright Insertion: abc \rightarrow abcd
	- Deletion: $abc \rightarrow ac$
	- ▶ Substitution: $abc \rightarrow adc$
	- ▶ Transposition: $ab \rightarrow ba$
	- Duplication: $abc \rightarrow abbc$
	- ▶ Contraction: $abbc \rightarrow abc$
- ▶ Cost of a simple operation: depends on
	- \blacktriangleright operation type
	- ▶ characters involved
- \blacktriangleright Total cost: sum of the costs of the simple operations.

 Ω

Distance measures on series On strings

Table: Summary of edit distances on strings of lengths m and n. † Depends on how the operation costs are set.

Table 2: Summary of edit distances on strings, with the intervals $\mathcal{L}_{\mathcal{A}}$ and $\mathcal{L}_{\mathcal{A}}$

 QQ

イロトイ部トイ君トイ君ト

Distance measures on series On symbolic sequences

Figure: Example of SAX representation with $w = 4$ and $A = 4$.

MINDIST distance (from SAX) between symbolic sequences \hat{x} and \hat{y} :

$$
D_{\text{MINDIST}}\left(\hat{x}, \hat{y}\right) = \sqrt{\frac{n}{w}} \sqrt{\sum_{i=1}^{w} \left(\text{dist}\left(\hat{x}_i, \hat{y}_i\right)\right)^2}
$$

where the $dist$ function is based on a look-up table:

Table: Example of look-up table for MINDIST with $A = 4$ for the quantization bins β_i .

a	b	c	d	
a	0	0	$\beta_2 - \beta_1$	$\beta_3 - \beta_1$
b	0	0	0	$\beta_3 - \beta_2$
c	$\beta_2 - \beta_1$	0	0	0
d	$\beta_3 - \beta_1$	$\beta_3 - \beta_2$	0	β_1

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) Symbolic representations for time series Symbolic representations for time series January 8th, 2024 14 / 39

3 – ASTRIDE: for univariate time series

1. [Introduction](#page-1-0)

2. [Background and related work](#page-7-0)

3. [ASTRIDE: for univariate time series](#page-21-0)

- 3.1 [Limitations of existing symbolization methods](#page-22-0)
- 3.2 [The ASTRIDE method](#page-25-0)
- 3.3 [Experimental results](#page-32-0)

4. [d_symb: for multivariate time series](#page-37-0)

 QQ

すロト (御) すきとすきと

Limitations of existing symbolization methods The need for adaptive segmentation and quantization steps

Figure: Example of SAX (top) and ASTRIDE (bottom) representations of a signal with $n = 448$, $w = 4$, and $A = 4$.

- ✘ Uniform segmentation can not detect salient events such as peaks.
- ✘ Fixed (Gaussian) bins are not data-driven.

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 15 / 39

つくい

メロメメ 何 メ メ ヨ メ メ ヨ

Limitations of existing symbolization methods The need for a distance measure on symbolic sequences

Table: Summary of some popular symbic representations.

Many symbolic representations do not hold a distance measure.

▶ MINDIST from SAX...

- \triangleright considers adjacent symbols to be equal
- is based on the fixed Gaussian assumption
- is restricted to equal-length symbolic sequences

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 16 / 39

 QQ

イロメイ団 メイモメイモメ

Limitations of existing symbolization methods The need for a shared dictionary of symbols across the signals of a data set

\blacktriangleright Task: reconstruction.

- ▶ Symbolization: compression
	- **of N** time series with n samples each, each sample being encoded on n_{bits} bits
	- \blacktriangleright into N discrete-values series with w samples each, each sample being encoded on $log₂(A)$ bits.
- ▶ Reconstruction: decompression.

Table: Meat data set (UCR archive [\[2\]](#page-51-2)) with $N = 120$, $n = 448$, $w = 10$, $A = 9$. and $n_{\text{hits}} = 64$ bits.

➥ ABBA requires much more memory usage than SAX (e.g. 32 times more) because it is adaptive and its dictionary of symbols is not sha[red](#page-23-0) [a](#page-25-0)[cr](#page-23-0)[os](#page-24-0)[s](#page-25-0) [si](#page-21-0)[g](#page-22-0)[n](#page-24-0)[a](#page-25-0)[ls](#page-20-0)[.](#page-21-0) Ω

The ASTRIDE method Adaptive segmentation step

Stacking: from N univariate signals to 1 multivariate signal of dimension N .

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 18/39

The ASTRIDE method Adaptive segmentation step

▶ Change-point detection: finds the $w-1$ unknown instants $t_1^* < t_2^* < \ldots < t_{w-1}^*$ where the mean of $y = (y_1, \ldots, y_n)$ of dimension N changes abruptly

$$
\big(\hat{t}_1,\ldots,\hat{t}_{w-1}\big) = \underset{(t_1,\ldots,t_{w-1})}{\text{arg\,min}} \sum_{k=0}^{w+1} \sum_{t=t_k}^{t_{k+1}-1} \|y_t - \bar{y}_{t_k:t_{k+1}}\|^2
$$

where $\bar{\mathsf{y}}_{t_k:t_{k+1}}$ is the empirical mean of $\{\mathsf{y}_{t_k},\ldots,\mathsf{y}_{t_{k+1}-1}\}.$

- \blacktriangleright w is the user-chosen number of segments.
- \blacktriangleright The formulation seeks to reduce the error between the original signal and the best piecewise constant approximation.
- Solved using dynamic programming with a time complexity of $\mathcal{O}(Nwn^2)$.

つのへ

イロトイ団 トイミドイミド

The ASTRIDE method Adaptive segmentation step

Stacking: from N univariate signals to 1 multivariate signal of dimension N , so the change-points are shared thus memory-efficient.

Figure: Multivariate change-point detection on (univariate) si[gna](#page-26-0)l[s w](#page-28-0)[it](#page-26-0)[h](#page-27-0) $n = 128$ [a](#page-21-0)n[d](#page-37-0) $w = 50^{\circ}$ $w = 50^{\circ}$

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 19/39

The ASTRIDE method Adaptive quantization step

- Quantization bins: empirical quantiles of the means of all segments.
- ▶ Remarks
	- ▶ The segmentation corresponds to mean-shifts, so we represent each segment by its mean value.
	- \blacktriangleright By design, all symbols are equiprobable.
	- \rightarrow Shared dictionary of symbols: all steps are learned on a whole data set, thus ASTRIDE is memory-efficient.

 Ω

イロメイタメイをメイをメー

The ASTRIDE method The D-GED (Dynamic General Edit Distance) distance measure

Figure: Example of ASTRIDE representation of a signal with $n = 448$, $w = 4$, and $A = 4$.

1. Preprocessing.

▶ Including the segment length information: replicating each symbol proportionally to its segment length.

Example: 1230, with lengths 8, 2, 2, and 4 becomes 1111111122330000.

- ▶ Shortening: dividing each length by the minimum length. Example: 1111111122330000 becomes 11112300.
- 2. Applying the general edit distance with custom costs.
	- Substitution: Euclidean distance between the average mean values of the symbols.
	- ▶ Insertion: max of substitution costs.
	- Deletion: max of substitution costs.

 Ω

∢ ロ ▶ (何) (注) (注

The ASTRIDE method

Reconstruction of the ASTRIDE symbolic sequences

- 1. Each symbol is replicated by its true length.
- 2. Each symbol is replaced by its corresponding average of extracted mean features.

Figure: Example: reconstruction by ASTRIDE of a symbolic sequence with $w = 4$ and $A = 4$.

$$
\triangleright \text{ Memory cost: } \boxed{\text{Nw log}_2(A) + (w + A)n_{\text{bits}} \text{ bits.}}
$$

Table: Nb of bits to reconstruct a data set with $N = 120$, $w = 10$, $A = 9$, and $n_{\text{bits}} = 64$.

➥ ABBA takes 28 times more bits than ASTRIDE.

റെ ര

The ASTRIDE method FASTRIDE

FASTRIDE (Fast ASTRIDE): accelerated variant of ASTRIDE.

Table: Comparing ASTRIDE and FASTRIDE.

 299

すロト (御) すきとすきと

Experimental results

Table: Experimental setup

- Python implementation: <https://github.com/sylvaincom/astride>
- ➥ Results: ASTRIDE and FASTRIDE are the best for classification, and second best for reconstruction (after SFA).

 OQ

イロト イ押 トイヨ トイヨ トー

Experimental results Classification task

Figure: Classification benchmark averaged on 86 data sets from the UCR archive.

➥ ASTRIDE and FASTRIDE (quite similar) perform better than both SAX and 1d-SAX, and are quite robust to low values of w. ←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ QQ

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 25/39

Experimental results Reconstruction task

Figure: Example of reconstruction of a signal with $n = 470$, $A = 9$ and $w = 19$.

➥ ASTRIDE seems to perform better on this particular signal: SFA does not account well for peaks and ABBA has quantized segment len[gth](#page-33-0)[s.](#page-35-0) \overline{AB} and \overline{AB} つへへ

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 26 / 39

Experimental results Reconstruction task

Figure: Benchmarking the reconstruction error, averaged on around 60 data sets from the UCR archive, with $A = 9$, with regards to the empirical memory usage ratio being w/n .

ASTRIDE performs 2nd best behind SFA (and better than FASTRIDE). ➥ For very low memory usage ratios, ASTRIDE is comp[eti](#page-34-0)ti[ve](#page-36-0)[wit](#page-35-0)[h](#page-36-0) [S](#page-31-0)[F](#page-32-0)[A](#page-36-0)[.](#page-37-0)

Sylvain W. Combettes [Symbolic representations for time series](#page-0-0) January 8th, 2024 27 / 39

 Ω

Experimental results Computational complexity

Table: Processing times (in sec) of the symbolization, 1-NN classification, and reconstruction on the ECG200 data set composed of 100 training signals and 100 test signals of length $n = 96$, with $w = 10$ and $A = 9$.

- \rightarrow The adaptive segmentation step is quite fast (ASTRIDE vs FASTRIDE).
- **►** The classification of FASTRIDE is faster than ASTRIDE due to the unreplicated symbolic sequences.

つへへ

←ロト ←何ト ←ヨト ←ヨト

[d_symb: for multivariate time series](#page-37-0)

4 – d_symb: for multivariate time series

1. [Introduction](#page-1-0)

- 2. [Background and related work](#page-7-0)
- 3. [ASTRIDE: for univariate time series](#page-21-0)

4. [d_symb: for multivariate time series](#page-37-0)

- 4.1 [Limitations of existing approaches](#page-38-0)
- 4.2 The d symb symbolization and distance measure
- 4.3 [Experimental results](#page-42-0)
- 4.4 The d symb playground

つくい

Limitations of existing approaches

Distance measures on multivariate time series \rightarrow extensions of distances in univariate time series with 2 strategies:

- ▶ Independent strategy: summing the univariate distances from all dimensions
- ▶ Dependent strategy: for example, in DTW, a multivariate series is considered as a single series where each timestamp is a multidimensional point
- ✘ Computational cost, interpretability.
- ▶ Symbolic representations for multivariate time series \rightarrow rare
	- ▶ Dimensionality reduction: apply PCA then symbolize the univariate reduced signal
	- \blacktriangleright Independent strategy: symbolize each dimension independently, then
		- \triangleright concatenates them into a single long string
		- is uses a multivariate Gaussian distribution with a total alphabet of size A^d , with d the dimension
		- $\boldsymbol{\times}$ do not scale well with the dimension d, interpretability of (large) alphabets
	- ▶ Dependent strategy: multivariate version of the mean per segment of SAX: real value that corresponds to the average of the L_2 -norms of each multidimensional sample

 Ω

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ...

The d_symb symbolization and distance measure

Figure: Multivariate signal (spectrogram) and its d_{symb} symbolic sequence.

Steps of d_{symb}

- 1. Segmentation: change-point detection (on the mean).
- 2. Quantization: K-means clustering (of the mean vectors per segment), with $K = A$
- 3. Distance: general edit distance between the resulting symbolic signals.

KO K K (F) K E K

 \mathcal{A} .

 Ω

The d_symb symbolization and distance measure Segmentation

▶ Change-point detection: finding the w^* unknown instants $t_1^* < t_2^* < \ldots < t_{w^*}^*$ where the mean of signal $x = (x_1, \ldots, x_n)$ change abruptly:

$$
(\hat{w}, \hat{t}_1, \ldots, \hat{t}_{\hat{w}}) = \underset{(w, t_1, \ldots, t_w)}{\arg \min} \sum_{k=0}^{w+1} \sum_{t=t_k}^{t_{k+1}-1} ||x_t - \bar{x}_{t_k:t_{k+1}}||^2 + \lambda w
$$

where $\bar{x}_{t_k:t_{k+1}}$ is the empirical mean of $\{x_{t_k},\ldots,x_{t_{k+1}-1}\}$ and $\lambda>0$ is a penalization parameter.

- ▶ Compromise between the reconstruction error and the number of change-points.
- \blacktriangleright When λ is small, many change-points are detected. For calibration purposes, we often use $\lambda = \ln(n)$ [\[10\]](#page-53-3).
- ▶ Solved using the Pruned Exact Linear Time (PELT) algorithm [\[5\]](#page-52-2), which is shown to have $\mathcal{O}(n)$ complexity (under some assumptions).

 Ω

The d_symb symbolization and distance measure Distance measure

- 1. Preprocessing as in ASTRIDE.
	- ▶ Replicating each symbol proportionally to its segment length.
	- \blacktriangleright Shortening.
- 2. Applying the general edit distance with custom costs.
	- ▶ Substitution: Euclidean distance between the cluster centers of the symbols.
	- ▶ Insertion: max of substitution costs.
	- \blacktriangleright Deletion: max of substitution costs.

 200

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ...

Experimental results

Application of d_{symb} to 3 real-world data sets of multivariate physiological signals

Table: Experimental setup

Results: d_{symb} is fast to compute and is interpretable.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Experimental results Human locomotion data set

Figure: Color bars for 60 recordings, with $\lambda = \ln(n)$ and $A = 9$

- \rightarrow The general structure is coherent with the protocol.
- **►** Change-point detection finds stationary segments.
- Each symbol can be associated with a type of behavior.

K ロ ▶ K 部 ▶ K 君 ▶ K 君 ▶

 QQ

Experimental results armCODA data set

Figure: d_{symb} with $A = 7$. Same subject with 4 movements in sagittal plane elevation.

- \rightarrow We detect the 3 iterations of the protocol.
- \rightarrow Symbol 4: resting while standing. Symbol 6: resting while seating.
- Each movement has its own symbol.

つへへ

 $($ ロ) $($ $\overline{\theta}$) $($ $\overline{\theta}$) $($ $\overline{\theta}$) $($ $\overline{\theta}$ $)$

Experimental results armCODA data set

Figure: Positions (x, y, z) (in cm and in the laboratory frame) of the head, left forearm (L), and right forearm (R) for each symbol centroid.

- Each cluster center is an average of body positions.
- ➥ (Front view) Symbol 4: resting while standing. Symbol 6: resting while seating.
- ➥ (Front view) Symbol 7: bilateral arm elevation. Symbol 1: left arm elevation.

つへへ

The d_symb playground Demo time: application of d_symb to the JIG SAWS data set

Streamlit app <https://dsymb-playground.streamlit.app>

O Python implementation <https://github.com/boniolp/dsymb-playground>

つへへ

イロト イ押 トイヨ トイヨ トー

5 – Conclusion

- 1. [Introduction](#page-1-0)
- 2. [Background and related work](#page-7-0)
- 3. [ASTRIDE: for univariate time series](#page-21-0)
- 4. [d_symb: for multivariate time series](#page-37-0)
- 5. [Conclusion](#page-47-0)
- 5.1 [Recap](#page-48-0)
- 5.2 [Perspectives](#page-49-0)

 2990

イロトイ部トイ君トイ君ト

Recap

\blacktriangleright ASTRIDE: for a data set of univariate time series

➥ Performs very well in classification and reconstruction, while being memory-efficient.

S. W. Combettes, C. Truong, and L. Oudre. "SAX-DD : une nouvelle représentation symbolique pour séries temporelles." Published in *Proceedings of the Groupe de Recherche et d'Etudes en Traitement du Signal et des Images (GRETSI)*, Nancy, France, September 2022.

S. W. Combettes, C. Truong, and L. Oudre. "ASTRIDE: Adaptive Symbolization for Time Series Databases." Submitted to *Data Mining and Knowledge Discovery (DAMI)* in February 2023.

d_{symb} : for a data set of multivariate time series; showcased with the d_{symb} playground

- \rightarrow Can deal with multivariate non-stationary physiological signals thanks to a change-point detection procedure.
- \rightarrow Interpretable.
- ➥ Much faster than DTW.

S. W. Combettes, C. Truong, and L. Oudre. "An Interpretable Distance Measure for Multivariate Non-Stationary Physiological Signals." To be published in *Proceedings of the International Conference on Data Mining Workshops (ICDMW)*, Shanghai, China, December 2023.

S. W. Combettes, P. Boniol, C. Truong, and L. Oudre. "d_{svmb} playground: an interactive tool to explore large multivariate time series datasets." To be published in *Proceedings of the International Conference on Data Engineering (ICDE) – Demonstration track*, Utrecht, Netherlands, May 2024.

 Ω

Perspectives

▶ Apply ASTRIDE or d_{symb} to more tasks

- \blacktriangleright Intermediate step in classifiers
- ▶ Analyzed by methods in bioinformatics
- \blacktriangleright Markov chains
- \blacktriangleright Extension to even more complex physiological signals
	- ▶ Multi-resolution
	- ▶ Correlation between dimensions
- \blacktriangleright Investigate the distance
	- ▶ Links between edit distances and DTW?
	- ▶ Lower-bound?
- ▶ Multimodal aspect

 \mathbb{B} Ω

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

[Conclusion](#page-47-0) [Perspectives](#page-49-0)

Thank you for your attention.

 200

メロメメ 御きメ ミトメ ミトー

References I

S. W. Combettes, P. Boniol, A. Mazarguil, D. Wang, D. Vaquero-Ramos, M. Chauveau, L. Oudre, N. Vayatis, P.-P. Vidal, A. Roren, and M.-M. Lefèvre-Colau. Arm-CODA: A Dataset of Upper-limb Human Movement during Routine Examination.

Image Processing On Line (preprint), 2023. [https://www.ipol.im/pub/pre/494/.](https://www.ipol.im/pub/pre/494/)

H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, and E. Keogh.

The ucr time series archive.

IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

S. Elsworth and S. Güttel.

Abba: adaptive brownian bridge-based symbolic aggregation of time series. *Data Min Knowl Disc*, 34:1175–1200, 2020.

References II

Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan, H. C. Lin, L. Tao, L. Zappella, B. Béjar, D. D. Yuh, et al.

The jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling.

In *Modeling and Monitoring of Computer Assisted Interventions (M2CAI) – MICCAI Workshop*, 2014.

R. Killick, P. Fearnhead, and I. A. Eckley.

Optimal detection of changepoints with a linear computational cost. *Journal of the American Statistical Association*, 107(500):1590–1598, 2012.

J. Lin, E. Keogh, L. Wei, and S. Lonardi.

Experiencing sax: a novel symbolic representation of time series. *Data Min Knowl Disc*, 15:107–144, 2007.

S. Malinowski, T. Guyet, R. Quiniou, and R. Tavenard. 1d-sax: A novel symbolic representation for time series. In *Advances in Intelligent Data Analysis XII*, pages 273–284, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

 Ω

References III

P. Schäfer and M. Högqvist.

Sfa: A symbolic fourier approximation and index for similarity search in high dimensional datasets.

In *Proceedings of the 15th International Conference on Extending Database Technology*, EDBT '12, page 516–527. Association for Computing Machinery, 2012.

- C. Truong, R. Barrois-Müller, T. Moreau, C. Provost, A. Vienne-Jumeau, A. Moreau, P.-P. Vidal, N. Vayatis, S. Buffat, A. Yelnik, D. Ricard, and L. Oudre. A Data Set for the Study of Human Locomotion with Inertial Measurements Units. *Image Processing On Line*, 9:381–390, 2019. [https://doi.org/10.5201/ipol.2019.265.](https://doi.org/10.5201/ipol.2019.265)
	- C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change point detection methods. *Signal Processing*, 167:107299, 2020.

 Ω