An Interpretable Distance Measure for Multivariate Non-Stationary Physiological Signals

Sylvain W. Combettes, Charles Truong, and Laurent Oudre

Centre Borelli, ENS Paris-Saclay

ICDM AI4TS workshop - Shanghai, China - December 1st, 2023

école ______ normale ______ supérieure _____ UNIVERSITÉ paris-saclay ____ PARIS-SACLAY

Comparing multivariate non-stationary physiological signals Our approach: symbolization, then distance on strings

I) Context and motivation

Comparing multivariate non-stationary physiological signals Our approach: symbolization, then distance on strings

I.1) Comparing multivariate non-stationary physiological signals

Motivation: study of human locomotion [3]

- Angular velocity recorded on the left and right feet using a pair of sensors.
- Protocol: standing, walking, turning around, walking back, and standing.
- Multivariate signals with d = 16 dimensions: norms of the STFT (Short Time Fourier Transform) of each foot recording (univariate signal).

Comparing multivariate non-stationary physiological signals Our approach: symbolization, then distance on strings

I.2) Our approach: symbolization, then distance on strings

- Popular distances between multivariate time series (Euclidean distance, Dynamic Time Warping) can not handle non-stationarity.
- Our distance is interpretable and can compare non-stationary signals: (i) symbolization, (ii) distance on strings.

Symbolization technique

- Segmentation step: a real-valued signal of length *n* is split into *w* segments (*w* < *n*).
- Quantization step: each segment is mapped to a discrete value taken from a set of A symbols. Example of set of symbols with A = 5: {a,b,c,d,e}.

Segmentation Distance measure

II) The d_symb symbolization and distance measure

Segmentation Distance measure

II) The d_symb symbolization and distance measure

Steps of *d*_{symb}

- Segmentation: change-point detection (on the mean).
- Quantization: K-means clustering (of the means per segment), with K = A.
- Distance: general edit distance between the resulting symbolic signals.

Segmentation Distance measure

II.1) Segmentation

Change-point detection: finding the w^* unknown instants $t_1^* < t_2^* < \ldots < t_{w^*+1}^*$ where the mean of signal $x = (x_1, \ldots, x_n)$ change abruptly:

$$\left(\hat{w}, \hat{t}_1, \dots, \hat{t}_{\hat{w}+1}\right) = \arg\min_{(w, t_1, \dots, t_{w+1})} \sum_{k=0}^{w+1} \sum_{t=t_k}^{t_{k+1}-1} \|x_t - \bar{x}_{t_k: t_{k+1}}\|^2 + \lambda w, \quad (1)$$

where $\bar{x}_{t_k:t_{k+1}}$ is the empirical mean of $\{x_{t_k}, \ldots, x_{t_{k+1}-1}\}$ and $\lambda > 0$ is a penalization parameter.

Remarks

- Compromise between the reconstruction error and the number of change-points.
- When λ is small, many change-points are detected. For calibration purposes, we use $\lambda = \ln(n)$ [4].
- Solved using the Pruned Exact Linear Time (PELT) algorithm [1], which is shown to have O(n) complexity (under some assumptions).

Segmentation Distance measure

II.2) Distance measure

The *d_{symb}* distance measure: levering the general edit distance

Preprocessing.

- Including the segment length information: replicating each symbol proportionally to its segment length.
 Example: abd becomes aabbbbdd.
- Shortening: dividing each length by the minimum length. Example: aabbbbdd becomes abbd.
- Applying the general edit distance with custom costs.
 - Edit distance on strings (a.k.a Levenshtein distance [2]): minimal cost of a sequence of operations that transform a string into another.
 - Allowed simple operations and their costs:
 - Substitution: Euclidean distance between the cluster centers of the symbols.
 - Insertion: max of substitution costs.
 - Deletion: max of substitution costs.
 - Total cost: sum of the costs of the simple operations.

nterpretation of the d_symb symbolization nterpretation of the d_symb distance measure

III) Experimental results

9/15

Interpretation of the d_symb symbolization Interpretation of the d_symb distance measure

III.1) Interpretation of the d_symb symbolization

Color bars for 60 recordings.

Observations

- The general structure is coherent with the protocol.
- Change-point detection finds stationary segments.
- Each symbol can be associated with a type of behavior.

symbolic sequences

III.2) Interpretation of the d_symb distance measure

Benchmark: computing the silhouette score

• We have 3 groups of patients:

- healthy,
- neurological pathology (such as cerebellar disorder),
- or orthopedic pathology (such as knee injuries).
- The silhouette coefficient is calculated using the distance matrix and the ground truth labels corresponding to the patient group.

Distance measure	Mean Silhouette score	Median Silhouette score
DTW-D	0.15	0.18
DTW-I	0.15	0.19
<i>d</i> _{symb}	0.33	0.40

Interpretation of the d_symb symbolization Interpretation of the d_symb distance measure

III.2) Interpretation of the d_symb distance measure

Robustness to the difference in length

Observations

- The two scaled univariate gait signals are different in length....
- but are considered similar by *d_{symb}* (applied to their multivariate spectrograms).

Interpretation of the d_symb symbolization Interpretation of the d_symb distance measure

Thank you for your attention.

Sylvain.combettes@ens-paris-saclay.fr

𝗞 https://sylvaincom.github.io

13/15

Interpretation of the d_symb symbolization Interpretation of the d_symb distance measure

References

- R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.
- V. I. Levenshtein et al.
 - Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics Doklady, volume 10, pages 707–710, 1966.
- C. Truong, R. Barrois-Müller, T. Moreau, C. Provost, A. Vienne-Jumeau, A. Moreau, P.-P. Vidal, N. Vayatis, S. Buffat, A. Yelnik, D. Ricard, and L. Oudre.
 - A Data Set for the Study of Human Locomotion with Inertial Measurements Units.
 - Image Processing On Line, 9:381–390, 2019.
 - https://doi.org/10.5201/ipol.2019.265.

Interpretation of the d_symb symbolization Interpretation of the d_symb distance measure

References

C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change point detection methods. <u>Signal Processing</u>, 167:107299, 2020.

15/15