An Interpretable Distance Measure for Multivariate Non-Stationary Physiological Signals

Introduction

Motivation: study of human locomotion [3]

- Angular velocity recorded on the left and right feet using a pair of sensors.
- Protocol: standing, walking, turning around, walking back, and standing.
- Multivariate signals with d = 16 dimensions: norms of the STFT (Short Time Fourier Transform) of each univariate foot recording.

Figure 1: Gait signal acquisition protocol.

Comparing multivariate time series

- Popular distances (Euclidean distance, Dynamic Time Warping) can not handle non-stationarity.
- Our distance is interpretable and can compare non-stationary signals: (i) symbolization, (ii) distance on strings.

Symbolization technique

- Segmentation step: a real-valued signal of length n is split into w segments (w < n).
- Quantization step: each segment is mapped to a discrete value taken from a set of A symbols.

Figure 2: Symbolization of a multivariate signal into a string called a symbolic sequence (visualized using a color bar).

Sylvain W. Combettes, Charles Truong, and Laurent Oudre

Université Paris-Saclay, Université Paris Cité, ENS Paris-Saclay, CNRS, SSA, INSERM, Centre Borelli

Experimental results: the distance Method: the d symb symbolization and distance measure Silhouette coefficient calculated using the distance matrix and the ground truth patient group: Levering the general edit distance

Steps of d_{symb} [1]

- **1**Segmentation: change-point detection (on the mean).
- Quantization: K-means clustering (of the means per segment), with K = A.
- **3** Distance: general edit distance between the resulting symbolic signals.

Change-point detection

Finding the w^* unknown instants $t_1^* < t_2^* < \ldots < t_{w^*+1}^*$ where the mean of signal $x = (x_1, \ldots, x_n)$ change abruptly:

$$(\hat{w}, \hat{t}_1, \dots, \hat{t}_{\hat{w}+1}) = \operatorname*{arg\,min}_{(w, t_1, \dots, t_{w+1})} \overset{w+1}{\underset{k=0}{\overset{t_{k+1}-1}{\sum}}} \|x_t - \bar{x}_{t_k: t_{k+1}}\|^2 + \lambda w,$$

where $\bar{x}_{t_k:t_{k+1}}$ is the empirical mean of $\{x_{t_k}, \ldots, x_{t_{k+1}-1}\}$ and $\lambda > 0$ is a penalization parameter.

- Compromise between the reconstruction error and the number of change-points.
- When λ is small, many change-points are detected.
- For calibration purposes, we use $\lambda = \ln(n)$.
- Solved using the Pruned Exact Linear Time (PELT) algorithm [2], which is shown to have $\mathcal{O}(n)$ complexity (under some assumptions).

Experimental results: interpretation of the symbolization

structure is coherent with the clinical change-point detection finds general protocol: The and each symbol can be associated with a specific type of behavior. stationary segments,

Figure 3: Spectrogram (multivariate signal) of one recording with its corresponding color bar.

• Preprocessing.

- Including the segment length information: replicating each symbol proportionally to its segment length. Example: abd becomes aabbbbdd.
- Shortening: dividing each length by the minimum length.
- Example: aabbbbdd becomes abbd.

• Applying the general edit distance with custom costs.

- Edit distance on strings (a.k.a Levenshtein distance): minimal cost of a sequence of operations that transform a string into another.
- Allowed simple operations and their costs:

• Substitution: Euclidean distance between the cluster centers of the symbols.

- Insertion: max of substitution costs.
- Deletion: max of substitution costs.
- Total cost: sum of the costs of the simple operations.

- Dist sure
- DTV
- DT

 a_{syn}

Figure 4: Color bars for 60 recordings, with 3 classes and A = 9.

ance mea-	Mean Silhou-	Median Silhou-
	ette score	ette score
N-D	0.15	0.18
N-I	0.15	0.19
nb	0.33	0.40

Robustness to the difference in lengths:

Figure 5: Two gait signals and their color bars.

References

[1] S. W. Combettes, C. Truong, and L. Oudre. An interpretable distance measure for multivariate non-stationary physiological signals. In 2023 IEEE International Conference on Data Mining Workshops (ICDMW), pages 533–539, 2023. [2] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500):1590-1598, 2012.

[3] C. Truong and et al. A Data Set for the Study of Human Locomotion with Inertial Measurements Units. Image Processing On Line, 9:381–390, 2019. https://doi.org/10.5201/ipol.2019.265.

> \boxtimes sylvain.combettes@ens-paris-saclay.fr **%** https://sylvaincom.github.io